These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 36996262)
1. Electrowetting-Induced Coalescence of Sessile Droplets in Viscous Medium. Quintero JSM; Majhy B; Caesar M; Waghmare PR Langmuir; 2023 Apr; 39(14):4917-4923. PubMed ID: 36996262 [TBL] [Abstract][Full Text] [Related]
2. Modeling the coalescence of sessile droplets. Sellier M; Trelluyer E Biomicrofluidics; 2009 Jun; 3(2):22412. PubMed ID: 19693347 [TBL] [Abstract][Full Text] [Related]
3. Coalescence of immiscible droplets in liquid environments. Xu H; Wang T; Che Z J Colloid Interface Sci; 2024 Apr; 659():60-70. PubMed ID: 38157727 [TBL] [Abstract][Full Text] [Related]
4. Bridge evolution during the coalescence of immiscible droplets. Xu H; Wang T; Che Z J Colloid Interface Sci; 2022 Dec; 628(Pt A):869-877. PubMed ID: 35963173 [TBL] [Abstract][Full Text] [Related]
5. Coalescence of sessile microdroplets subject to a wettability gradient on a solid surface. Ahmadlouydarab M; Lan C; Das AK; Ma Y Phys Rev E; 2016 Sep; 94(3-1):033112. PubMed ID: 27739804 [TBL] [Abstract][Full Text] [Related]
6. Effect of electrowetting induced capillary oscillations on coalescence of compound droplets. Bansal S; Sen P J Colloid Interface Sci; 2018 Nov; 530():223-232. PubMed ID: 29982014 [TBL] [Abstract][Full Text] [Related]
7. Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting. Hong J; Lee SJ Lab Chip; 2015 Feb; 15(3):900-7. PubMed ID: 25500988 [TBL] [Abstract][Full Text] [Related]
8. Digital Microfluidics: Magnetic Transportation and Coalescence of Sessile Droplets on Hydrophobic Surfaces. Hassan MR; Zhang J; Wang C Langmuir; 2021 May; 37(19):5823-5837. PubMed ID: 33961445 [TBL] [Abstract][Full Text] [Related]
9. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow. Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900 [TBL] [Abstract][Full Text] [Related]
10. Coalescence Processes of Droplets and Liquid Marbles. Jin J; Ooi CH; Dao DV; Nguyen NT Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400525 [TBL] [Abstract][Full Text] [Related]
11. Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect. Wang K; Liang Q; Jiang R; Zheng Y; Lan Z; Ma X Langmuir; 2017 Jun; 33(25):6258-6268. PubMed ID: 28562053 [TBL] [Abstract][Full Text] [Related]
12. Effects of particle size on the electrocoalescence dynamics and arrested morphology of liquid marbles. Zhang Y; Yang C; Yuan S; Yao X; Chao Y; Cao Y; Song Q; Sauret A; Binks BP; Shum HC J Colloid Interface Sci; 2022 Feb; 608(Pt 1):1094-1104. PubMed ID: 34879587 [TBL] [Abstract][Full Text] [Related]
13. A Review on the Coalescence of Confined Drops with a Focus on Scaling Laws for the Growth of the Liquid Bridge. Ryu S; Zhang H; Anuta UJ Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004903 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic Study of the Electrocoalescence of Aqueous Droplets in Crude Oil. Leary T; Yeganeh M; Maldarelli C ACS Omega; 2020 Apr; 5(13):7348-7360. PubMed ID: 32280876 [TBL] [Abstract][Full Text] [Related]
15. Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow. Zagnoni M; Baroud CN; Cooper JM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046303. PubMed ID: 19905432 [TBL] [Abstract][Full Text] [Related]
16. Symmetric drop coalescence on an under-liquid substrate. Mitra S; Mitra SK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033013. PubMed ID: 26465562 [TBL] [Abstract][Full Text] [Related]
17. Coalescence of isotropic droplets in overheated free standing smectic films. Pikina ES; Ostrovskii BI; Pikin SA Soft Matter; 2020 May; 16(19):4591-4606. PubMed ID: 32365155 [TBL] [Abstract][Full Text] [Related]
18. Coalescence of Droplets in a Microwell Driven by Surface Acoustic Waves. Sudeepthi A; Nath A; Yeo LY; Sen AK Langmuir; 2021 Feb; 37(4):1578-1587. PubMed ID: 33478219 [TBL] [Abstract][Full Text] [Related]
19. Droplets formation and merging in two-phase flow microfluidics. Gu H; Duits MH; Mugele F Int J Mol Sci; 2011; 12(4):2572-97. PubMed ID: 21731459 [TBL] [Abstract][Full Text] [Related]
20. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy. Yu J; Wei X; Guo Y; Zhang Z; Rui P; Zhao Y; Zhang W; Shi S; Wang P Lab Chip; 2021 Jan; 21(2):284-295. PubMed ID: 33439205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]