These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36996317)

  • 21. Vacancy-enabled N
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Tada T; Hosono H
    Nature; 2020 Jul; 583(7816):391-395. PubMed ID: 32669696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions.
    Zhang X; Kong RM; Du H; Xia L; Qu F
    Chem Commun (Camb); 2018 May; 54(42):5323-5325. PubMed ID: 29736524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanochemistry for ammonia synthesis under mild conditions.
    Han GF; Li F; Chen ZW; Coppex C; Kim SJ; Noh HJ; Fu Z; Lu Y; Singh CV; Siahrostami S; Jiang Q; Baek JB
    Nat Nanotechnol; 2021 Mar; 16(3):325-330. PubMed ID: 33318640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Looking for Options to Sustainably Fixate Nitrogen. Are Molecular Metal Oxides Catalysts a Viable Avenue?
    González-Cabaleiro R; Thompson JA; Vilà-Nadal L
    Front Chem; 2021; 9():742565. PubMed ID: 34595154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous Fe
    Liu JC; Ma XL; Li Y; Wang YG; Xiao H; Li J
    Nat Commun; 2018 Apr; 9(1):1610. PubMed ID: 29686395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomically dispersed Au
    Wang X; Wang W; Qiao M; Wu G; Chen W; Yuan T; Xu Q; Chen M; Zhang Y; Wang X; Wang J; Ge J; Hong X; Li Y; Wu Y; Li Y
    Sci Bull (Beijing); 2018 Oct; 63(19):1246-1253. PubMed ID: 36658862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Achieving industrial ammonia synthesis rates at near-ambient conditions through modified scaling relations on a confined dual site.
    Wang T; Abild-Pedersen F
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34282023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical nitrogen reduction: recent progress and prospects.
    Chanda D; Xing R; Xu T; Liu Q; Luo Y; Liu S; Tufa RA; Dolla TH; Montini T; Sun X
    Chem Commun (Camb); 2021 Jul; 57(60):7335-7349. PubMed ID: 34235522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Hydrogen-Free Approach for Activating an Fe Catalyst Using Trace Amounts of Noble Metals and Confinement into Nanoparticles.
    Sakurai S; Yamada M; He J; Hata K; Futaba DN
    J Phys Chem Lett; 2022 Feb; 13(7):1879-1885. PubMed ID: 35175057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanocatalytic Room-Temperature Synthesis of Ammonia from Its Elements Down to Atmospheric Pressure.
    Reichle S; Felderhoff M; Schüth F
    Angew Chem Int Ed Engl; 2021 Dec; 60(50):26385-26389. PubMed ID: 34651400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. B-N polymer embedded iron(0) nanoparticles as highly active and long lived catalyst in the dehydrogenation of ammonia borane.
    Duman S; Metin O; Ozkar S
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4954-61. PubMed ID: 23901516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper Particle-Enhanced Lithium-Mediated Synthesis of Green Ammonia from Water and Nitrogen.
    Zhang Z; Zhao Y; Sun B; Xu J; Jin Q; Lu H; Lyu N; Dang ZM; Jin Y
    ACS Appl Mater Interfaces; 2022 May; 14(17):19419-19425. PubMed ID: 35467840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reducing Iron Oxide with Ammonia: A Sustainable Path to Green Steel.
    Ma Y; Bae JW; Kim SH; Jovičević-Klug M; Li K; Vogel D; Ponge D; Rohwerder M; Gault B; Raabe D
    Adv Sci (Weinh); 2023 Jun; 10(16):e2300111. PubMed ID: 36995040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system.
    Hawtof R; Ghosh S; Guarr E; Xu C; Mohan Sankaran R; Renner JN
    Sci Adv; 2019 Jan; 5(1):eaat5778. PubMed ID: 30746439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Embedding Double Transition Metal Atoms in B-Modified Two-Dimensional Carbon-Rich Conjugated Frameworks for Efficient Ammonia Synthesis.
    Jiao L; Guo L
    Inorg Chem; 2022 Nov; 61(46):18574-18589. PubMed ID: 36350575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions.
    John J; Lee DK; Sim U
    Nano Converg; 2019 Apr; 6(1):15. PubMed ID: 31025218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A minireview on catalysts for photocatalytic N
    Qi P; Gao X; Wang J; Liu H; He D; Zhang Q
    RSC Adv; 2022 Jan; 12(3):1244-1257. PubMed ID: 35425192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review on sensing and catalytic activity of nano-catalyst for synthesis of one-step ammonia and urea: Challenges and perspectives.
    Qureshi S; Mumtaz M; Chong FK; Mukhtar A; Saqib S; Ullah S; Mubashir M; Khoo KS; Show PL
    Chemosphere; 2022 Mar; 291(Pt 3):132806. PubMed ID: 34780730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revisiting the Electrochemical Nitrogen Reduction on Molybdenum and Iron Carbides: Promising Catalysts or False Positives?
    Izelaar B; Ripepi D; Asperti S; Dugulan AI; Hendrikx RWA; Böttger AJ; Mulder FM; Kortlever R
    ACS Catal; 2023 Feb; 13(3):1649-1661. PubMed ID: 36776385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light-Induced Thermal Gradients in Ruthenium Catalysts Significantly Enhance Ammonia Production.
    Li X; Zhang X; Everitt HO; Liu J
    Nano Lett; 2019 Mar; 19(3):1706-1711. PubMed ID: 30721079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.