BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36996510)

  • 1. New ε-N-thioglutaryl-lysine derivatives as SIRT5 inhibitors: Chemical synthesis, kinetic and crystallographic studies.
    Deng J; Liu ZM; Zhu KR; Cui GL; Liu LX; Yan YH; Ning XL; Yu ZJ; Li GB; Qi QR
    Bioorg Chem; 2023 Jun; 135():106487. PubMed ID: 36996510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based discovery of new selective small-molecule sirtuin 5 inhibitors.
    Liu S; Ji S; Yu ZJ; Wang HL; Cheng X; Li WJ; Jing L; Yu Y; Chen Q; Yang LL; Li GB; Wu Y
    Chem Biol Drug Des; 2018 Jan; 91(1):257-268. PubMed ID: 28756638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrazolone derivatives as potent and selective small-molecule SIRT5 inhibitors.
    Yao J; Yin Y; Han H; Chen S; Zheng Y; Liang B; Wu M; Shu K; Debnath B; Lombard DB; Wang Q; Cheng K; Neamati N; Liu Y
    Eur J Med Chem; 2023 Feb; 247():115024. PubMed ID: 36543033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of new human Sirtuin 5 inhibitors by mimicking glutaryl-lysine substrates.
    Yang F; Su H; Deng J; Mou L; Wang H; Li R; Dai QQ; Yan YH; Qian S; Wang Z; Li GB; Yang L
    Eur J Med Chem; 2021 Dec; 225():113803. PubMed ID: 34461505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic Tripeptide-based Potent and Selective Human SIRT5 Inhibitors.
    Jiang Y; Zheng W
    Med Chem; 2020; 16(3):358-367. PubMed ID: 31161996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis and biological evaluation of 2,4,6- trisubstituted triazine derivatives as new nonpeptide small-molecule SIRT5 inhibitors.
    Wang L; Hu L; Deng J; Hou S; Mou L; Lei P; Chen X; Liu J; Jiang Y; Xiong R; Tian X; Zhang W; Li R; Yang W; Yang L
    Bioorg Med Chem; 2023 Oct; 93():117455. PubMed ID: 37643500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme.
    Rajabi N; Hansen TN; Nielsen AL; Nguyen HT; Baek M; Bolding JE; Bahlke OØ; Petersen SEG; Bartling CRO; Strømgaard K; Olsen CA
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202115805. PubMed ID: 35299278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive fluorogenic substrates for sirtuin deacylase inhibitor discovery.
    Yang LL; Wang HL; Yan YH; Liu S; Yu ZJ; Huang MY; Luo Y; Zheng X; Yu Y; Li GB
    Eur J Med Chem; 2020 Apr; 192():112201. PubMed ID: 32163813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition.
    Fischer F; Gertz M; Suenkel B; Lakshminarasimhan M; Schutkowski M; Steegborn C
    PLoS One; 2012; 7(9):e45098. PubMed ID: 23028781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, Synthesis, and Biological Evaluation of 8-Mercapto-3,7-Dihydro-1
    Han H; Li C; Li M; Yang L; Zhao S; Wang Z; Liu H; Liu D
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32549218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bicyclic pentapeptide-based highly potent and selective pan-SIRT1/2/3 inhibitor harboring N
    Li R; Yan L; Sun X; Zheng W
    Bioorg Med Chem; 2020 Apr; 28(7):115356. PubMed ID: 32067892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5).
    Zhou Y; Zhang H; He B; Du J; Lin H; Cerione RA; Hao Q
    J Biol Chem; 2012 Aug; 287(34):28307-14. PubMed ID: 22767592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrates for efficient fluorometric screening employing the NAD-dependent sirtuin 5 lysine deacylase (KDAC) enzyme.
    Madsen AS; Olsen CA
    J Med Chem; 2012 Jun; 55(11):5582-90. PubMed ID: 22583019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aryl Fluorosulfate Based Inhibitors That Covalently Target the SIRT5 Lysine Deacylase.
    Bolding JE; Martín-Gago P; Rajabi N; Gamon LF; Hansen TN; Bartling CRO; Strømgaard K; Davies MJ; Olsen CA
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202204565. PubMed ID: 36130196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of hetero-triaryls as a new chemotype for subtype-selective and potent Sirt5 inhibition.
    Glas C; Naydenova E; Lechner S; Wössner N; Yang L; Dietschreit JCB; Sun H; Jung M; Kuster B; Ochsenfeld C; Bracher F
    Eur J Med Chem; 2022 Oct; 240():114594. PubMed ID: 35853430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human sirtuins are differentially sensitive to inhibition by nitrosating agents and other cysteine oxidants.
    Kalous KS; Wynia-Smith SL; Summers SB; Smith BC
    J Biol Chem; 2020 Jun; 295(25):8524-8536. PubMed ID: 32371394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel thiourea-based sirtuin inhibitory warheads.
    Zang W; Hao Y; Wang Z; Zheng W
    Bioorg Med Chem Lett; 2015 Aug; 25(16):3319-24. PubMed ID: 26081291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Selective Cyclic Peptidic Human SIRT5 Inhibitor.
    Liu J; Huang Y; Zheng W
    Molecules; 2016 Sep; 21(9):. PubMed ID: 27626398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Substrate Specificity-Defining Residues of Human SIRT5 in Modulating the Structural Stability and Inhibitory Features of the Enzyme.
    Yu J; Haldar M; Mallik S; Srivastava DK
    PLoS One; 2016; 11(3):e0152467. PubMed ID: 27023330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5.
    Fiorentino F; Castiello C; Mai A; Rotili D
    J Med Chem; 2022 Jul; 65(14):9580-9606. PubMed ID: 35802779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.