These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36996536)

  • 1. Characterization of thermal neutron distribution of an Am-Be neutron source setup by CdZnTe detector.
    Liang X; Zhao D; Jia W; Hei D; Cheng C
    Appl Radiat Isot; 2023 Jun; 196():110778. PubMed ID: 36996536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a compensation system for thermal neutron measurements based on Cd(Cu)-covered NaI(Tl) detectors.
    Zhao D; Jia W; Hei D; Cheng C; Li J; Wang M; Qiu M
    Appl Radiat Isot; 2021 Oct; 176():109882. PubMed ID: 34403927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of a virtual frisch-grid CdZnTe detector for prompt γ-ray induced by 14 MeV neutrons: Monte Carlo simulation study.
    Lee T; Kim Y; Jo A; Kim J; Lee W
    Appl Radiat Isot; 2019 Nov; 153():108818. PubMed ID: 31344648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prompt gamma ray detection and imaging for boron neutron capture therapy using CdTe detector and novel detector shield - Monte Carlo study.
    Moktan H; Lee CL; Cho SH
    Med Phys; 2023 Mar; 50(3):1736-1745. PubMed ID: 36625477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.
    Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G
    Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron.
    Fantidis JG; Nicolaou GE; Potolias C; Vordos N; Bandekas DV
    J Radioanal Nucl Chem; 2011; 290(2):289-295. PubMed ID: 26224910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of CdZnTe as neutron detector around medical accelerators.
    Martín-Martín A; Iñiguez MP; Luke PN; Barquero R; Lorente A; Morchón J; Gallego E; Quincoces G; Martí-Climent JM
    Radiat Prot Dosimetry; 2009 Feb; 133(4):193-9. PubMed ID: 19329512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis by Monte Carlo of thermal neutron flux from a
    Cevallos-Robalino LE; García-Fernández GF; Lorente A; Gallego E; Vega-Carrillo HR; Guzmán-Garcia KA
    Appl Radiat Isot; 2019 Sep; 151():19-24. PubMed ID: 31154075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the intrinsic detection efficiency of scintillator/Cherenkov detector for monitoring 14MeV neutrons by using foil activation method.
    Qing S; Hao F; Liang L; Zunhao H; Hongkui Z; Wenbao J; Yongsheng L; Daqian H
    Appl Radiat Isot; 2021 Aug; 174():109761. PubMed ID: 33971549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for boron neutron capture therapy.
    Nievaart VA; Légràdy D; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H
    Med Phys; 2007 Apr; 34(4):1321-35. PubMed ID: 17500463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal neutron beam optimization for PGNAA applications using Q-learning algorithm and neural network.
    Zolfaghari M; Masoudi SF; Rahmani F; Fathi A
    Sci Rep; 2022 May; 12(1):8635. PubMed ID: 35606380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First experimental verification of the neutron field of Nagoya University Accelerator-driven neutron source for boron neutron capture therapy.
    Watanabe K; Yoshihashi S; Ishikawa A; Honda S; Yamazaki A; Tsurita Y; Uritani A; Tsuchida K; Kiyanagi Y
    Appl Radiat Isot; 2021 Feb; 168():109553. PubMed ID: 33302249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MCNP benchmark of a
    Cheng C; Wei Z; Hei D; Jia W; Li J; Cai P; Gao Y; Shan Q; Ling Y
    Appl Radiat Isot; 2020 Apr; 158():109045. PubMed ID: 31989932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NaI detector neutron activation spectra for PGNAA applications.
    Gardner RP; El Sayyed; Zheng Y; Hayden S; Mayo CW
    Appl Radiat Isot; 2000 Oct; 53(4-5):483-97. PubMed ID: 11003483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fission converter and metal-oxide-semiconductor field effect transistor study of thermal neutron flux distribution in an epithermal neutron therapy beam.
    Kaplan GI; Rosenfeld AB; Allen BJ; Coderre JA; Liu HB
    Med Phys; 1999 Sep; 26(9):1989-94. PubMed ID: 10505889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of epi-thermal neutron beam intensity detector with
    Kashiwagi Y; Aoki K; Tamaki S; Guan X; Kusaka S; Sato F; Murata I
    Appl Radiat Isot; 2019 Sep; 151():145-149. PubMed ID: 31177072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.
    Shan Q; Chu S; Jia W
    Appl Radiat Isot; 2015 Nov; 105():204-208. PubMed ID: 26325583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal and epithermal neutron flux distributions measurement in thermal column of TRR using an experimental-simulation method.
    Adeli R; Kasesaz Y; Shirmardi SP; Ezaty A
    Appl Radiat Isot; 2018 Mar; 133():100-104. PubMed ID: 29335157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance tests of external moderators of a PGNAA setup.
    Naqvi AA; Fazal-ur-Rehman ; Al-Jarallah MI; Abu-Jarad F; Maslehuddin M
    Appl Radiat Isot; 2003 Jan; 58(1):27-38. PubMed ID: 12485660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a filtration system to improve the dose distribution of an accelerator-based neutron capture therapy system.
    Hu N; Tanaka H; Ono K
    Med Phys; 2022 Oct; 49(10):6609-6621. PubMed ID: 35941788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.