These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36996558)

  • 21. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China.
    Jiang S; Hua H; Zhang L; Liu X; Wu H; Yuan Z
    Sci Total Environ; 2022 Mar; 811():152224. PubMed ID: 34896143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation and management of waste electric vehicle batteries in China.
    Xu C; Zhang W; He W; Li G; Huang J; Zhu H
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):20825-20830. PubMed ID: 28803394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile.
    Wang Z; Zeng S; Guo J; Qin T
    PLoS One; 2018; 13(7):e0200169. PubMed ID: 29979778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.
    Lee JH; Lee IS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of lithium-ion battery scrap generation from electric vehicles in Brazil.
    Cabral-Neto JP; de Mendonça Pimentel RM; Santos SM; Silva MM
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):23070-23078. PubMed ID: 36316550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.
    Li B; Gao X; Li J; Yuan C
    Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Economic and environmental characterization of an evolving Li-ion battery waste stream.
    Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ
    J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The development of a new type of rechargeable batteries based on hybrid electrolytes.
    Zhou H; Wang Y; Li H; He P
    ChemSusChem; 2010 Sep; 3(9):1009-19. PubMed ID: 20677207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Additional Emissions and Cost from Storing Electricity in Stationary Battery Systems.
    Schmidt TS; Beuse M; Zhang X; Steffen B; Schneider SF; Pena-Bello A; Bauer C; Parra D
    Environ Sci Technol; 2019 Apr; 53(7):3379-3390. PubMed ID: 30848899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives.
    Hantanasirisakul K; Sawangphruk M
    Glob Chall; 2023 Apr; 7(4):2200212. PubMed ID: 37020621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Integrated Model to Conduct Multi-Criteria Technology Assessments: The Case of Electric Vehicle Batteries.
    Baars J; Cerdas F; Heidrich O
    Environ Sci Technol; 2023 Mar; 57(12):5056-5067. PubMed ID: 36913650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A critical review of the circular economy for lithium-ion batteries and photovoltaic modules - status, challenges, and opportunities.
    Heath GA; Ravikumar D; Hansen B; Kupets E
    J Air Waste Manag Assoc; 2022 Jun; 72(6):478-539. PubMed ID: 35687330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current status and perspectives on recycling of end-of-life battery of electric vehicle in Korea (Republic of).
    Choi Y; Rhee SW
    Waste Manag; 2020 Apr; 106():261-270. PubMed ID: 32241694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Connecting battery technologies for electric vehicles from battery materials to management.
    Zhao G; Wang X; Negnevitsky M
    iScience; 2022 Feb; 25(2):103744. PubMed ID: 35128354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use-Phase Drives Lithium-Ion Battery Life Cycle Environmental Impacts When Used for Frequency Regulation.
    Ryan NA; Lin Y; Mitchell-Ward N; Mathieu JL; Johnson JX
    Environ Sci Technol; 2018 Sep; 52(17):10163-10174. PubMed ID: 30118212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.