These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36996758)

  • 21. Temporal condition pattern mining in large, sparse electronic health record data: A case study in characterizing pediatric asthma.
    Campbell EA; Bass EJ; Masino AJ
    J Am Med Inform Assoc; 2020 Apr; 27(4):558-566. PubMed ID: 32049282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data.
    Ibrahim H; Saad A; Abdo A; Sharaf Eldin A
    J Biomed Inform; 2016 Apr; 60():294-308. PubMed ID: 26903152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mining Clinical Data using Minimal Predictive Rules.
    Batal I; Hauskrecht M
    AMIA Annu Symp Proc; 2010 Nov; 2010():31-5. PubMed ID: 21346935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Data mining to generate adverse drug events detection rules.
    Chazard E; Ficheur G; Bernonville S; Luyckx M; Beuscart R
    IEEE Trans Inf Technol Biomed; 2011 Nov; 15(6):823-30. PubMed ID: 21859604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Data Mining Algorithm for Association Rules with Chronic Disease Constraints.
    Liu Y; Wang L; Miao R; Ren H
    Comput Intell Neurosci; 2022; 2022():8526256. PubMed ID: 36052052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Mining Template of Predictive Temporal Clinical Event Patterns From Patient Electronic Medical Records.
    Li J; Tan X; Xu X; Wang F
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):2138-2147. PubMed ID: 30346297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Mining Algorithm of Maximum Frequent Itemsets Based on Frequent Pattern Tree.
    Mi X
    Comput Intell Neurosci; 2022; 2022():7022168. PubMed ID: 35634074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-throughput phenotyping with temporal sequences.
    Estiri H; Strasser ZH; Murphy SN
    J Am Med Inform Assoc; 2021 Mar; 28(4):772-781. PubMed ID: 33313899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mining of high utility-probability sequential patterns from uncertain databases.
    Zhang B; Lin JC; Fournier-Viger P; Li T
    PLoS One; 2017; 12(7):e0180931. PubMed ID: 28742847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Relation Extraction Framework for Biomedical Text Using Hybrid Feature Set.
    Muzaffar AW; Azam F; Qamar U
    Comput Math Methods Med; 2015; 2015():910423. PubMed ID: 26347797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RANWAR: rank-based weighted association rule mining from gene expression and methylation data.
    Mallik S; Mukhopadhyay A; Maulik U
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):59-66. PubMed ID: 25265613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Negative and positive association rules mining from text using frequent and infrequent itemsets.
    Mahmood S; Shahbaz M; Guergachi A
    ScientificWorldJournal; 2014; 2014():973750. PubMed ID: 24955429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance.
    Ji Y; Ying H; Dews P; Mansour A; Tran J; Miller RE; Massanari RM
    IEEE Trans Inf Technol Biomed; 2011 May; 15(3):428-37. PubMed ID: 21435986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bayesian rule learning for biomedical data mining.
    Gopalakrishnan V; Lustgarten JL; Visweswaran S; Cooper GF
    Bioinformatics; 2010 Mar; 26(5):668-75. PubMed ID: 20080512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Schizophrenia Auxiliary Diagnosis System Based on Data Mining Technology.
    Wang X; Zhao N; Ouyang P; Lin J; Hu J
    J Med Syst; 2019 Mar; 43(5):125. PubMed ID: 30919125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A data-driven framework of typical treatment process extraction and evaluation.
    Chen J; Sun L; Guo C; Wei W; Xie Y
    J Biomed Inform; 2018 Jul; 83():178-195. PubMed ID: 29902575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GatewayNet: a form of sequential rule mining.
    Kilgore PCSR; Korneeva N; Arnold TC; Trutschl M; Cvek U
    BMC Med Inform Decis Mak; 2019 Apr; 19(1):87. PubMed ID: 31014328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graph-based biomedical text summarization: An itemset mining and sentence clustering approach.
    Nasr Azadani M; Ghadiri N; Davoodijam E
    J Biomed Inform; 2018 Aug; 84():42-58. PubMed ID: 29906584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporating repeating temporal association rules in Naïve Bayes classifiers for coronary heart disease diagnosis.
    Orphanou K; Dagliati A; Sacchi L; Stassopoulou A; Keravnou E; Bellazzi R
    J Biomed Inform; 2018 May; 81():74-82. PubMed ID: 29555443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.