These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 36996843)
1. Support-less ceramic 3D printing of bioceramic structures using a hydrogel bath. Raja N; Park H; Gal CW; Sung A; Choi YJ; Yun HS Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36996843 [TBL] [Abstract][Full Text] [Related]
2. Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces. Diloksumpan P; de Ruijter M; Castilho M; Gbureck U; Vermonden T; van Weeren PR; Malda J; Levato R Biofabrication; 2020 Feb; 12(2):025014. PubMed ID: 31918421 [TBL] [Abstract][Full Text] [Related]
3. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Ma H; Feng C; Chang J; Wu C Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201 [TBL] [Abstract][Full Text] [Related]
4. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454 [TBL] [Abstract][Full Text] [Related]
5. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
6. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration. Kim W; Kim G Biofabrication; 2019 Nov; 12(1):015007. PubMed ID: 31509811 [TBL] [Abstract][Full Text] [Related]
7. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
8. Ceramic Omnidirectional Bioprinting in Cell-laden Suspensions for the Generation of Bone Analogs. Jalandhra G; Romanazzo S; Nemec S; Roohani I; Kilian KA J Vis Exp; 2022 Aug; (186):. PubMed ID: 35993710 [TBL] [Abstract][Full Text] [Related]
9. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Gupta D; Vashisth P; Bellare J Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468 [TBL] [Abstract][Full Text] [Related]
10. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Wen Y; Xun S; Haoye M; Baichuan S; Peng C; Xuejian L; Kaihong Z; Xuan Y; Jiang P; Shibi L Biomater Sci; 2017 Aug; 5(9):1690-1698. PubMed ID: 28686244 [TBL] [Abstract][Full Text] [Related]
11. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity. Chang CH; Lin CY; Liu FH; Chen MH; Lin CP; Ho HN; Liao YS PLoS One; 2015; 10(11):e0143713. PubMed ID: 26618362 [TBL] [Abstract][Full Text] [Related]
12. Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Wang MM; Flores RL; Witek L; Torroni A; Ibrahim A; Wang Z; Liss HA; Cronstein BN; Lopez CD; Maliha SG; Coelho PG Sci Rep; 2019 Dec; 9(1):18439. PubMed ID: 31804544 [TBL] [Abstract][Full Text] [Related]
13. Unraveling the influence of channel size and shape in 3D printed ceramic scaffolds on osteogenesis. Entezari A; Wu Q; Mirkhalaf M; Lu Z; Roohani I; Li Q; Dunstan CR; Jiang X; Zreiqat H Acta Biomater; 2024 May; 180():115-127. PubMed ID: 38642786 [TBL] [Abstract][Full Text] [Related]
14. Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration. Nayak VV; Slavin BV; Bergamo ETP; Torroni A; Runyan CM; Flores RL; Kasper FK; Young S; Coelho PG; Witek L Tissue Eng Part C Methods; 2023 Jul; 29(7):332-345. PubMed ID: 37463403 [TBL] [Abstract][Full Text] [Related]
15. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration. Beheshtizadeh N; Farzin A; Rezvantalab S; Pazhouhnia Z; Lotfibakhshaiesh N; Ai J; Noori A; Azami M Int J Biol Macromol; 2023 Feb; 229():636-653. PubMed ID: 36586652 [TBL] [Abstract][Full Text] [Related]
16. Embedded 3D Printing of Cryogel-Based Scaffolds. Bilici Ç; Altunbek M; Afghah F; Tatar AG; Koç B ACS Biomater Sci Eng; 2023 Aug; 9(8):5028-5038. PubMed ID: 37463481 [TBL] [Abstract][Full Text] [Related]
17. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092 [TBL] [Abstract][Full Text] [Related]
18. Electric-field assisted 3D-fibrous bioceramic-based scaffolds for bone tissue regeneration: Fabrication, characterization, and in vitro cellular activities. Kim M; Yun HS; Kim GH Sci Rep; 2017 Jun; 7(1):3166. PubMed ID: 28600540 [TBL] [Abstract][Full Text] [Related]
19. [Status of 3D Printing Technology for Preparing Bioceramic Materials]. Zhang J; Li M; Tang B; Dong H; Yu Q Zhongguo Yi Liao Qi Xie Za Zhi; 2023 Nov; 47(6):651-658. PubMed ID: 38086723 [TBL] [Abstract][Full Text] [Related]
20. 3D Printed SiOC(N) Ceramic Scaffolds for Bone Tissue Regeneration: Improved Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. Yang Y; Kulkarni A; Soraru GD; Pearce JM; Motta A Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]