These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36996916)
1. Mycoremediation with Agaricus bisporus and Pleurotus ostreatus growth substrates versus phytoremediation with Festuca rubra and Brassica sp. for the recovery of a Pb and γ-HCH contaminated soil. Hidalgo J; Epelde L; Anza M; Becerril JM; Garbisu C Chemosphere; 2023 Jun; 327():138538. PubMed ID: 36996916 [TBL] [Abstract][Full Text] [Related]
2. Cadmium and lead bioavailability and their effects on polycyclic aromatic hydrocarbons biodegradation by spent mushroom substrate. García-Delgado C; Jiménez-Ayuso N; Frutos I; Gárate A; Eymar E Environ Sci Pollut Res Int; 2013 Dec; 20(12):8690-9. PubMed ID: 23716079 [TBL] [Abstract][Full Text] [Related]
3. Bacterial interactions with the mycelium of the cultivated edible mushrooms Agaricus bisporus and Pleurotus ostreatus. Shamugam S; Kertesz MA J Appl Microbiol; 2023 Jan; 134(1):. PubMed ID: 36626759 [TBL] [Abstract][Full Text] [Related]
4. In situ mycoremediation of acid rain and heavy metals co-contaminated soil through microbial inoculation with Pleurotus ostreatus. Dou R; Xie Y; Liu FX; Wang B; Xu F; Xiao K Sci Total Environ; 2024 Feb; 912():169020. PubMed ID: 38056637 [TBL] [Abstract][Full Text] [Related]
5. Bioremediation of petroleum hydrocarbons polluted soil by spent mushroom substrates: Microbiological structure and functionality. Mayans B; Antón-Herrero R; García-Delgado C; Delgado-Moreno L; Guirado M; Pérez-Esteban J; Escolástico C; Eymar E J Hazard Mater; 2024 Jul; 473():134650. PubMed ID: 38776816 [TBL] [Abstract][Full Text] [Related]
6. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Steliga T; Kluk D Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481 [TBL] [Abstract][Full Text] [Related]
7. Accumulation of HT-2 toxin from contaminated mushroom compost by edible Varga E; Soros C; Fodor P; Cserháti M; Sebők R; Kriszt B; Geosel A Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Apr; 39(4):803-816. PubMed ID: 35394401 [TBL] [Abstract][Full Text] [Related]
8. Biological remediation treatments improve the health of a mixed contaminated soil before significantly reducing contaminant levels. Hidalgo J; Artetxe U; Becerril JM; Gómez-Sagasti MT; Epelde L; Vilela J; Garbisu C Environ Sci Pollut Res Int; 2024 Jan; 31(4):6010-6024. PubMed ID: 38133759 [TBL] [Abstract][Full Text] [Related]
9. Investigating the potential of sunflower species, fermented palm wine and Pleurotus ostreatus for treatment of petroleum-contaminated soil. Dickson UJ; Coffey M; George Mortimer RJ; Smith B; Ray N; Di Bonito M Chemosphere; 2020 Feb; 240():124881. PubMed ID: 31574438 [TBL] [Abstract][Full Text] [Related]
10. Cultivation of Pleurotus ostreatus and other edible mushrooms. Sánchez C Appl Microbiol Biotechnol; 2010 Feb; 85(5):1321-37. PubMed ID: 19956947 [TBL] [Abstract][Full Text] [Related]
11. Mycoremediation of PAH-contaminated soil. Bhatt M; Cajthaml T; Sasek V Folia Microbiol (Praha); 2002; 47(3):255-8. PubMed ID: 12094734 [TBL] [Abstract][Full Text] [Related]
12. Nephroprotective Effect of Ahmed OM; Ebaid H; El-Nahass ES; Ragab M; Alhazza IM Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32937925 [TBL] [Abstract][Full Text] [Related]
13. Effect of supplementing crop substrate with defatted pistachio meal on Agaricus bisporus and Pleurotus ostreatus production. Pardo-Giménez A; Catalán L; Carrasco J; Álvarez-Ortí M; Zied D; Pardo J J Sci Food Agric; 2016 Aug; 96(11):3838-45. PubMed ID: 26692380 [TBL] [Abstract][Full Text] [Related]
14. Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Hestbjerg H; Willumsen PA; Christensen M; Andersen O; Jacobsen CS Environ Toxicol Chem; 2003 Apr; 22(4):692-8. PubMed ID: 12685699 [TBL] [Abstract][Full Text] [Related]
15. Development of nutraceutical formulations based on the mycelium of Pleurotus ostreatus and Agaricus bisporus. Cardoso RVC; Fernandes Â; Oliveira MBPP; Calhelha RC; Barros L; Martins A; Ferreira ICFR Food Funct; 2017 Jun; 8(6):2155-2164. PubMed ID: 28534588 [TBL] [Abstract][Full Text] [Related]
16. Subcellular distribution of aluminum, bismuth, cadmium, chromium, copper, iron, manganese, nickel, and lead in cultivated mushrooms (Agaricus bisporus and Pleurotus ostreatus). Muñoz AH; Corona FG; Wrobel K; Soto GM; Wrobel K Biol Trace Elem Res; 2005 Sep; 106(3):265-77. PubMed ID: 16141474 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Becerra-Castro C; Kidd PS; Rodríguez-Garrido B; Monterroso C; Santos-Ucha P; Prieto-Fernández A Environ Pollut; 2013 Jul; 178():202-10. PubMed ID: 23583940 [TBL] [Abstract][Full Text] [Related]
18. Selection of Trichoderma strains capable of increasing laccase production by Pleurotus ostreatus and Agaricus bisporus in dual cultures. Flores C; Vidal C; Trejo-Hernández MR; Galindo E; Serrano-Carreón L J Appl Microbiol; 2009 Jan; 106(1):249-57. PubMed ID: 19120619 [TBL] [Abstract][Full Text] [Related]
19. Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula. Purnomo AS; Putra SR; Shimizu K; Kondo R Environ Sci Pollut Res Int; 2014 Oct; 21(19):11305-12. PubMed ID: 24840358 [TBL] [Abstract][Full Text] [Related]
20. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability. García-Delgado C; Yunta F; Eymar E J Hazard Mater; 2015 Dec; 300():281-288. PubMed ID: 26188871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]