These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36997058)

  • 21. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions.
    Ebrahimi B
    J Mol Cell Cardiol; 2017 Jul; 108():61-72. PubMed ID: 28502796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.
    Mohamed TM; Stone NR; Berry EC; Radzinsky E; Huang Y; Pratt K; Ang YS; Yu P; Wang H; Tang S; Magnitsky S; Ding S; Ivey KN; Srivastava D
    Circulation; 2017 Mar; 135(10):978-995. PubMed ID: 27834668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity.
    Abad M; Hashimoto H; Zhou H; Morales MG; Chen B; Bassel-Duby R; Olson EN
    Stem Cell Reports; 2017 Mar; 8(3):548-560. PubMed ID: 28262548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Future of Direct Cardiac Reprogramming: Any
    López-Muneta L; Miranda-Arrubla J; Carvajal-Vergara X
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiac reprogramming factor Gata4 reduces postinfarct cardiac fibrosis through direct repression of the profibrotic mediator snail.
    Mathison M; Singh VP; Sanagasetti D; Yang L; Pinnamaneni JP; Yang J; Rosengart TK
    J Thorac Cardiovasc Surg; 2017 Nov; 154(5):1601-1610.e3. PubMed ID: 28711329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of Gata4, Mef2c, and Tbx5 Generates Induced Cardiomyocytes Via Direct Reprogramming and Rare Fusion in the Heart.
    Isomi M; Sadahiro T; Yamakawa H; Fujita R; Yamada Y; Abe Y; Murakata Y; Akiyama T; Shu T; Mizukami H; Fukuda K; Ieda M
    Circulation; 2021 May; 143(21):2123-2125. PubMed ID: 34029137
    [No Abstract]   [Full Text] [Related]  

  • 27. Direct Reprogramming of Adult Human Cardiac Fibroblasts into Induced Cardiomyocytes Using miRcombo.
    Paoletti C; Divieto C; Chiono V
    Methods Mol Biol; 2022; 2573():31-40. PubMed ID: 36040584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct Cardiac Reprogramming for Cardiovascular Regeneration and Differentiation.
    Sadahiro T; Ieda M
    Keio J Med; 2020 Sep; 69(3):49-58. PubMed ID: 31915320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Medicinal Chemistry Approaches to Heart Regeneration.
    Schade D; Plowright AT
    J Med Chem; 2015 Dec; 58(24):9451-79. PubMed ID: 26288266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression.
    Zhou H; Morales MG; Hashimoto H; Dickson ME; Song K; Ye W; Kim MS; Niederstrasser H; Wang Z; Chen B; Posner BA; Bassel-Duby R; Olson EN
    Genes Dev; 2017 Sep; 31(17):1770-1783. PubMed ID: 28982760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isoform Specific Effects of Mef2C during Direct Cardiac Reprogramming.
    Wang L; Huang P; Near D; Ravi K; Xu Y; Liu J; Qian L
    Cells; 2020 Jan; 9(2):. PubMed ID: 31979018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spotlight on epigenetic reprogramming in cardiac regeneration.
    Soler-Botija C; Forcales SV; Bayés Genís A
    Semin Cell Dev Biol; 2020 Jan; 97():26-37. PubMed ID: 31002867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration.
    Perveen S; Vanni R; Lo Iacono M; Rastaldo R; Giachino C
    Cells; 2023 Apr; 12(8):. PubMed ID: 37190075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiac regeneration with pluripotent stem cell-derived cardiomyocytes and direct cardiac reprogramming.
    Sadahiro T
    Regen Ther; 2019 Dec; 11():95-100. PubMed ID: 31304202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming.
    Garry GA; Bezprozvannaya S; Chen K; Zhou H; Hashimoto H; Morales MG; Liu N; Bassel-Duby R; Olson EN
    Nat Cell Biol; 2021 May; 23(5):467-475. PubMed ID: 33941892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in direct cardiac reprogramming.
    Srivastava D; Yu P
    Curr Opin Genet Dev; 2015 Oct; 34():77-81. PubMed ID: 26454285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct cellular reprogramming techniques for cardiovascular regenerative therapeutics.
    He X; Dutta S; Liang J; Paul C; Huang W; Xu M; Chang V; Ao I; Wang Y
    Can J Physiol Pharmacol; 2024 Jan; 102(1):1-13. PubMed ID: 37903419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular reprogramming of fibroblasts in heart regeneration.
    Chi C; Song K
    J Mol Cell Cardiol; 2023 Jul; 180():84-93. PubMed ID: 36965699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier.
    Chang Y; Lee E; Kim J; Kwon YW; Kwon Y; Kim J
    Biomaterials; 2019 Feb; 192():500-509. PubMed ID: 30513475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved Cardiac Function in Postischemic Rats Using an Optimized Cardiac Reprogramming Cocktail Delivered in a Single Novel Adeno-Associated Virus.
    Zhou H; Yang J; Srinath C; Zeng A; Wu I; Leon EC; Qureshi TN; Reid CA; Nettesheim ER; Xu E; Duclos Z; Mohamed TMA; Farshidfar F; Fejes A; Liu J; Jones S; Feathers C; Chung TW; Jing F; Prince WS; Lin J; Yu P; Srivastava D; Hoey T; Ivey KN; Lombardi LM
    Circulation; 2023 Oct; 148(14):1099-1112. PubMed ID: 37602409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.