These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 36997686)
1. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. Mäkilä R; Wybouw B; Smetana O; Vainio L; Solé-Gil A; Lyu M; Ye L; Wang X; Siligato R; Jenness MK; Murphy AS; Mähönen AP Nat Plants; 2023 Apr; 9(4):631-644. PubMed ID: 36997686 [TBL] [Abstract][Full Text] [Related]
2. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Smetana O; Mäkilä R; Lyu M; Amiryousefi A; Sánchez Rodríguez F; Wu MF; Solé-Gil A; Leal Gavarrón M; Siligato R; Miyashima S; Roszak P; Blomster T; Reed JW; Broholm S; Mähönen AP Nature; 2019 Jan; 565(7740):485-489. PubMed ID: 30626967 [TBL] [Abstract][Full Text] [Related]
3. Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis. Ben-Targem M; Ripper D; Bayer M; Ragni L J Exp Bot; 2021 May; 72(10):3647-3660. PubMed ID: 33619529 [TBL] [Abstract][Full Text] [Related]
4. Xylem versus phloem in secondary growth: a balancing act mediated by gibberellins. Carlsbecker A; Augstein F J Exp Bot; 2021 May; 72(10):3489-3492. PubMed ID: 33948652 [TBL] [Abstract][Full Text] [Related]
5. Ethylene controls cambium stem cell activity via promoting local auxin biosynthesis. Yu Q; Cheng C; Zhou X; Li Y; Hu Y; Yang C; Zhou Y; Soliman TMA; Zhang H; Wang Q; Wang H; Jiang CZ; Gan SS; Gao J; Ma N New Phytol; 2023 Aug; 239(3):964-978. PubMed ID: 37282811 [TBL] [Abstract][Full Text] [Related]
6. Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Shi D; Lebovka I; López-Salmerón V; Sanchez P; Greb T Development; 2019 Jan; 146(1):. PubMed ID: 30626594 [TBL] [Abstract][Full Text] [Related]
7. Modeling hormonal control of cambium proliferation. Oles V; Panchenko A; Smertenko A PLoS One; 2017; 12(2):e0171927. PubMed ID: 28187161 [TBL] [Abstract][Full Text] [Related]
8. The Dynamics of Cambial Stem Cell Activity. Fischer U; Kucukoglu M; Helariutta Y; Bhalerao RP Annu Rev Plant Biol; 2019 Apr; 70():293-319. PubMed ID: 30822110 [TBL] [Abstract][Full Text] [Related]
9. Brassinosteroid-BZR1/2-WAT1 module determines the high level of auxin signalling in vascular cambium during wood formation. Lee J; Kim H; Park SG; Hwang H; Yoo SI; Bae W; Kim E; Kim J; Lee HY; Heo TY; Kang KK; Lee Y; Hong CP; Cho H; Ryu H New Phytol; 2021 May; 230(4):1503-1516. PubMed ID: 33570747 [TBL] [Abstract][Full Text] [Related]
10. Laying it on thick: a study in secondary growth. Turley EK; Etchells JP J Exp Bot; 2022 Jan; 73(3):665-679. PubMed ID: 34655214 [TBL] [Abstract][Full Text] [Related]
11. Gibberellin promotes cambium reestablishment during secondary vascular tissue regeneration after girdling in an auxin-dependent manner in Populus. Zhang Y; Wang L; Wu Y; Wang D; He XQ J Integr Plant Biol; 2024 Jan; 66(1):86-102. PubMed ID: 38051026 [TBL] [Abstract][Full Text] [Related]
12. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Zhao C; Craig JC; Petzold HE; Dickerman AW; Beers EP Plant Physiol; 2005 Jun; 138(2):803-18. PubMed ID: 15923329 [TBL] [Abstract][Full Text] [Related]
13. Vascular cambium stem cells: past, present and future. Wybouw B; Zhang X; Mähönen AP New Phytol; 2024 Aug; 243(3):851-865. PubMed ID: 38890801 [TBL] [Abstract][Full Text] [Related]
14. PtrHB7, a class III HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Zhu Y; Song D; Sun J; Wang X; Li L Mol Plant; 2013 Jul; 6(4):1331-43. PubMed ID: 23288865 [TBL] [Abstract][Full Text] [Related]
15. Plasmodesmata callose binding protein 2 contributes to the regulation of cambium/phloem formation and auxin response during the tissue reunion process in incised Arabidopsis stem. Ohba Y; Yoshihara S; Sato R; Matsuoka K; Asahina M; Satoh S; Iwai H J Plant Res; 2023 Nov; 136(6):865-877. PubMed ID: 37707645 [TBL] [Abstract][Full Text] [Related]
16. Cell Fate Decisions Within the Vascular Cambium-Initiating Wood and Bast Formation. Haas AS; Shi D; Greb T Front Plant Sci; 2022; 13():864422. PubMed ID: 35548289 [TBL] [Abstract][Full Text] [Related]
17. Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees. Chen JJ; Wang LY; Immanen J; Nieminen K; Spicer R; Helariutta Y; Zhang J; He XQ New Phytol; 2019 Oct; 224(1):188-201. PubMed ID: 31230359 [TBL] [Abstract][Full Text] [Related]
18. A Phloem-Expressed Bush M; Sethi V; Sablowski R Front Plant Sci; 2022; 13():888201. PubMed ID: 35557737 [TBL] [Abstract][Full Text] [Related]
19. Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation. Ilegems M; Douet V; Meylan-Bettex M; Uyttewaal M; Brand L; Bowman JL; Stieger PA Development; 2010 Mar; 137(6):975-84. PubMed ID: 20179097 [TBL] [Abstract][Full Text] [Related]
20. Two MADS-box genes regulate vascular cambium activity and secondary growth by modulating auxin homeostasis in Zheng S; He J; Lin Z; Zhu Y; Sun J; Li L Plant Commun; 2021 Sep; 2(5):100134. PubMed ID: 34746756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]