BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36997776)

  • 1. Staged purification of phosphogypsum using pH-dependent separation process.
    Chanouri H; Agayr K; Mounir EM; Benhida R; Khaless K
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):9920-9934. PubMed ID: 36997776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flotation purification of waste high-silica phosphogypsum.
    Fang J; Ge Y; Chen Z; Xing B; Bao S; Yong Q; Chi R; Yang S; Ni BJ
    J Environ Manage; 2022 Oct; 320():115824. PubMed ID: 35932745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphogypsum chemistry under highly anoxic conditions.
    Carbonell-Barrachina A; DeLaune RD; Jugsujinda A
    Waste Manag; 2002; 22(6):657-65. PubMed ID: 12214977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplification of the pretreatment method for phosphate oxygen isotope measurement in phosphogypsum leachate.
    Xie Y; Wu Z; Xie X; Fu S; Liu S; Mou S; Pei X
    J Environ Manage; 2024 Feb; 351():119869. PubMed ID: 38142596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous and simultaneous conversion of phosphogypsum waste to sodium sulfate and potassium sulfate using quaternary phase diagram.
    Laaboubi K; Bouargane B; Moreno SP; Bakiz B; Raya JPB; Atbir A
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37344-37356. PubMed ID: 36571681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristic pollutant purification analysis of modified phosphogypsum comprehensive utilization.
    Wang CQ; Xiong DM; Chen Y; Wu K; Tu MJ; Wang PX; Zhang ZJ; Zhou L
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):67456-67465. PubMed ID: 36048392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Case study: heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles.
    Al Attar L; Al-Oudat M; Shamali K; Abdul Ghany B; Kanakri S
    Environ Technol; 2012; 33(1-3):143-52. PubMed ID: 22519097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection.
    El Zrelli R; Rabaoui L; Daghbouj N; Abda H; Castet S; Josse C; van Beek P; Souhaut M; Michel S; Bejaoui N; Courjault-Radé P
    Environ Sci Pollut Res Int; 2018 May; 25(15):14690-14702. PubMed ID: 29532384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.
    Santos AJ; Mazzilli BP; Fávaro DI; Silva PS
    J Environ Radioact; 2006; 87(1):52-61. PubMed ID: 16375997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment.
    Ammar R; El Samrani AG; Kazpard V; Bassil J; Lartiges B; Saad Z; Chou L
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):9014-25. PubMed ID: 23764982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum.
    Papanicolaou F; Antoniou S; Pashalidis I
    J Environ Radioact; 2009 Oct; 100(10):854-7. PubMed ID: 19596498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental impact and management of phosphogypsum.
    Tayibi H; Choura M; López FA; Alguacil FJ; López-Delgado A
    J Environ Manage; 2009 Jun; 90(8):2377-86. PubMed ID: 19406560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclide migration and the environmental radiochemistry of Florida phosphogypsum.
    Burnett WC; Elzerman AW
    J Environ Radioact; 2001; 54(1):27-51. PubMed ID: 11379072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of simulated acid rain on fluorine mobility and the bacterial community of phosphogypsum.
    Wang M; Tang Y; Anderson CWN; Jeyakumar P; Yang J
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15336-15348. PubMed ID: 29564699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical behavior of fluorine and phosphorus in chemical looping gasification using phosphogypsum as an oxygen carrier.
    Yang J; Ma L; Liu H; Guo Z; Dai Q; Zhang W; Bounkhong K
    Chemosphere; 2020 Jun; 248():125979. PubMed ID: 32028158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of Co-pyrolysis on the immobilization and transformation of lead (Pb), chromium (Cr), nickel (Ni), and fluorine (F) in phosphogypsum-biomass mixtures.
    He M; Xu R; Qu G; Fu X; Liu X; Wang H; Tian Y; Yin C
    J Environ Manage; 2024 Jun; 362():121340. PubMed ID: 38824889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the effect of phosphogypsum amendment on two Arabidopsis thaliana ecotype growth and development.
    Ayadi A; Chorriba A; Fourati A; Gargouri-Bouzid R
    Environ Technol; 2015; 36(9-12):1547-55. PubMed ID: 25495660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of the environmental behavior of phosphogypsum with the application of lab-scale experiment.
    Pliaka M; Gaidajis G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(7):706-714. PubMed ID: 37143299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential radiological impact from a Brazilian phosphate facility.
    Glória dos Reis R; da Costa Lauria D
    J Environ Radioact; 2014 Oct; 136():188-94. PubMed ID: 24971522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient removal of phosphate impurities in waste phosphogypsum for the production of cement.
    Cai Q; Jiang J; Ma B; Shao Z; Hu Y; Qian B; Wang L
    Sci Total Environ; 2021 Aug; 780():146600. PubMed ID: 33774305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.