These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36998201)
1. Effects of sitagliptin on peritoneal membrane: The potential role of mesothelial cell tight junction proteins. Jo CH; Kim S; Ha TK; Kang DH; Kim GH Perit Dial Int; 2023 Nov; 43(6):448-456. PubMed ID: 36998201 [TBL] [Abstract][Full Text] [Related]
2. Tight junction protein expression from peritoneal dialysis Effluent. Kim S; Choi EY; Jo CH; Kim GH Ren Fail; 2019 Nov; 41(1):1011-1015. PubMed ID: 31724477 [No Abstract] [Full Text] [Related]
3. Expression and significance of SIRT6 in human peritoneal dialysis effluents and peritoneal mesothelial cells. Shi SS; Zhang YQ; Zhang LQ; Li YF; Zhou XS; Li RS Int Urol Nephrol; 2024 Aug; 56(8):2659-2670. PubMed ID: 38483736 [TBL] [Abstract][Full Text] [Related]
5. Human peritoneal tight junction, transporter and channel expression in health and kidney failure, and associated solute transport. Levai E; Marinovic I; Bartosova M; Zhang C; Schaefer B; Jenei H; Du Z; Drozdz D; Klaus G; Arbeiter K; Romero P; Schwenger V; Schwab C; Szabo AJ; Zarogiannis SG; Schmitt CP Sci Rep; 2023 Oct; 13(1):17429. PubMed ID: 37833387 [TBL] [Abstract][Full Text] [Related]
6. The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells. Lee SH; Kang HY; Kim KS; Nam BY; Paeng J; Kim S; Li JJ; Park JT; Kim DK; Han SH; Yoo TH; Kang SW Lab Invest; 2012 Dec; 92(12):1698-711. PubMed ID: 23007133 [TBL] [Abstract][Full Text] [Related]
7. Diabetes and exposure to peritoneal dialysis solutions alter tight junction proteins and glucose transporters of rat peritoneal mesothelial cells. Debray-García Y; Sánchez EI; Rodríguez-Muñoz R; Venegas MA; Velazquez J; Reyes JL Life Sci; 2016 Sep; 161():78-89. PubMed ID: 27493079 [TBL] [Abstract][Full Text] [Related]
8. TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. Kariya T; Nishimura H; Mizuno M; Suzuki Y; Matsukawa Y; Sakata F; Maruyama S; Takei Y; Ito Y Am J Physiol Renal Physiol; 2018 Feb; 314(2):F167-F180. PubMed ID: 28978530 [TBL] [Abstract][Full Text] [Related]
9. The TGF-beta-induced gene product, betaig-h3: its biological implications in peritoneal dialysis. Park SH; Choi SY; Kim MH; Oh EJ; Ryu HM; Kim CD; Kim IS; Kim YL Nephrol Dial Transplant; 2008 Jan; 23(1):126-35. PubMed ID: 17704110 [TBL] [Abstract][Full Text] [Related]
10. The effect of statin on epithelial-mesenchymal transition in peritoneal mesothelial cells. Chang TI; Kang HY; Kim KS; Lee SH; Nam BY; Paeng J; Kim S; Park JT; Yoo TH; Kang SW; Han SH PLoS One; 2014; 9(10):e109628. PubMed ID: 25275561 [TBL] [Abstract][Full Text] [Related]
11. Serum response factor accelerates the high glucose-induced Epithelial-to-Mesenchymal Transition (EMT) via snail signaling in human peritoneal mesothelial cells. He L; Lou W; Ji L; Liang W; Zhou M; Xu G; Zhao L; Huang C; Li R; Wang H; Chen X; Sun S PLoS One; 2014; 9(10):e108593. PubMed ID: 25303231 [TBL] [Abstract][Full Text] [Related]
13. Matrix metalloproteinase 9 is associated with peritoneal membrane solute transport and induces angiogenesis through β-catenin signaling. Padwal M; Siddique I; Wu L; Tang K; Boivin F; Liu L; Robertson J; Bridgewater D; West-Mays J; Gangji A; Brimble KS; Margetts PJ Nephrol Dial Transplant; 2017 Jan; 32(1):50-61. PubMed ID: 27190383 [TBL] [Abstract][Full Text] [Related]
14. Paricalcitol ameliorates epithelial-to-mesenchymal transition in the peritoneal mesothelium. Kang SH; Kim SO; Cho KH; Park JW; Yoon KW; Do JY Nephron Exp Nephrol; 2014; 126(1):1-7. PubMed ID: 24458092 [TBL] [Abstract][Full Text] [Related]
15. Effect of glucose polymer on the intercellular junctions of cultured human peritoneal mesothelial cells. Ito T; Yorioka N; Kyuden Y; Asakimori Y; Kiribayashi K; Ogawa T; Kohno N Nephron Clin Pract; 2003; 93(3):c97-105. PubMed ID: 12660418 [TBL] [Abstract][Full Text] [Related]
16. Gremlin promotes peritoneal membrane injury in an experimental mouse model and is associated with increased solute transport in peritoneal dialysis patients. Siddique I; Curran SP; Ghayur A; Liu L; Shi W; Hoff CM; Gangji AS; Brimble KS; Margetts PJ Am J Pathol; 2014 Nov; 184(11):2976-84. PubMed ID: 25194662 [TBL] [Abstract][Full Text] [Related]
17. Nitro-oleic acid inhibits the high glucose-induced epithelial-mesenchymal transition in peritoneal mesothelial cells and attenuates peritoneal fibrosis. Su W; Wang H; Feng Z; Sun J Am J Physiol Renal Physiol; 2020 Feb; 318(2):F457-F467. PubMed ID: 31760768 [TBL] [Abstract][Full Text] [Related]
18. The MicroRNA-199a/214 Cluster Targets E-Cadherin and Claudin-2 and Promotes High Glucose-Induced Peritoneal Fibrosis. Che M; Shi T; Feng S; Li H; Zhang X; Feng N; Lou W; Dou J; Tang G; Huang C; Xu G; Qian Q; Sun S; He L; Wang H J Am Soc Nephrol; 2017 Aug; 28(8):2459-2471. PubMed ID: 28428333 [TBL] [Abstract][Full Text] [Related]
19. [High glucose dialysate enhances peritoneal fibrosis through upregulating glucose transporters GLUT1 and SGLT1]. Hong M; Nie Z; Chen Z; Yu X; Bao B Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 May; 45(6):598-606. PubMed ID: 28247603 [TBL] [Abstract][Full Text] [Related]
20. Effect of glucose degradation products on the peritoneal membrane in a chronic inflammatory infusion model of peritoneal dialysis in the rat. Park SH; Lee EG; Kim IS; Kim YJ; Cho DK; Kim YL Perit Dial Int; 2004; 24(2):115-22. PubMed ID: 15119632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]