These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36998201)
41. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis. Shi Y; Tao M; Wang Y; Zang X; Ma X; Qiu A; Zhuang S; Liu N J Pathol; 2020 Jan; 250(1):79-94. PubMed ID: 31579944 [TBL] [Abstract][Full Text] [Related]
42. Aquaporin 3 expression is up-regulated by TGF-β1 in rat peritoneal mesothelial cells and plays a role in wound healing. Ryu HM; Oh EJ; Park SH; Kim CD; Choi JY; Cho JH; Kim IS; Kwon TH; Chung HY; Yoo M; Kim YL Am J Pathol; 2012 Dec; 181(6):2047-57. PubMed ID: 23041062 [TBL] [Abstract][Full Text] [Related]
43. Characterization of infiltrating macrophages in high glucose-induced peritoneal fibrosis in rats. Hu W; Jiang Z; Zhang Y; Liu Q; Fan J; Luo N; Dong X; Yu X Mol Med Rep; 2012 Jul; 6(1):93-9. PubMed ID: 22552745 [TBL] [Abstract][Full Text] [Related]
44. SGLT-2 inhibitors reduce glucose absorption from peritoneal dialysis solution by suppressing the activity of SGLT-2. Zhou Y; Fan J; Zheng C; Yin P; Wu H; Li X; Luo N; Yu X; Chen C Biomed Pharmacother; 2019 Jan; 109():1327-1338. PubMed ID: 30551383 [TBL] [Abstract][Full Text] [Related]
45. ST2 blockade mitigates peritoneal fibrosis induced by TGF-β and high glucose. Kim YC; Kim KH; Lee S; Jo JW; Park JY; Park MS; Tsogbadrakh B; Lee JP; Lee JW; Kim DK; Oh KH; Jang IJ; Kim YS; Cha RH; Yang SH J Cell Mol Med; 2019 Oct; 23(10):6872-6884. PubMed ID: 31397957 [TBL] [Abstract][Full Text] [Related]
47. Structural and functional alterations of the peritoneum after prolonged exposure to dialysis solutions: role of aminoguanidine. Lee EA; Oh JH; Lee HA; Kim SI; Park EW; Park KB; Park MS Perit Dial Int; 2001; 21(3):245-53. PubMed ID: 11475339 [TBL] [Abstract][Full Text] [Related]
48. IL-6 Yang X; Yan H; Jiang N; Yu Z; Yuan J; Ni Z; Fang W Am J Physiol Renal Physiol; 2020 Feb; 318(2):F338-F353. PubMed ID: 31841386 [TBL] [Abstract][Full Text] [Related]
49. Arctigenin alleviates TGF-β1-induced epithelial-mesenchymal transition and PAI-1 expression via AMPK/NF-κB pathway in peritoneal mesothelial cells. Jin G; Su Y; Dong Q; Zhao X; Zhang L; Yan X Biochem Biophys Res Commun; 2019 Dec; 520(2):413-419. PubMed ID: 31607474 [TBL] [Abstract][Full Text] [Related]
50. Twist contributes to proliferation and epithelial-to-mesenchymal transition-induced fibrosis by regulating YB-1 in human peritoneal mesothelial cells. He L; Che M; Hu J; Li S; Jia Z; Lou W; Li C; Yang J; Sun S; Wang H; Chen X Am J Pathol; 2015 Aug; 185(8):2181-93. PubMed ID: 26055210 [TBL] [Abstract][Full Text] [Related]
51. Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells. Shin HS; Ryu ES; Oh ES; Kang DH Lab Invest; 2015 Oct; 95(10):1157-73. PubMed ID: 26192086 [TBL] [Abstract][Full Text] [Related]
52. Transforming growth factor {beta}1 induces epithelial-mesenchymal transition by activating the JNK-Smad3 pathway in rat peritoneal mesothelial cells. Liu Q; Mao H; Nie J; Chen W; Yang Q; Dong X; Yu X Perit Dial Int; 2008 Jun; 28 Suppl 3():S88-95. PubMed ID: 18552272 [TBL] [Abstract][Full Text] [Related]
53. Calcitriol decreases TGF-β1 and angiotensin II production and protects against chlorhexide digluconate-induced liver peritoneal fibrosis in rats. Lee CJ; Subeq YM; Lee RP; Liou HH; Hsu BG Cytokine; 2014 Jan; 65(1):105-18. PubMed ID: 24210651 [TBL] [Abstract][Full Text] [Related]
54. Asiaticoside inhibits TGF-β1-induced mesothelial-mesenchymal transition and oxidative stress via the Nrf2/HO-1 signaling pathway in the human peritoneal mesothelial cell line HMrSV5. Zhao J; Shi J; Shan Y; Yu M; Zhu X; Zhu Y; Liu L; Sheng M Cell Mol Biol Lett; 2020; 25():33. PubMed ID: 32514269 [TBL] [Abstract][Full Text] [Related]
56. BRG1 accelerates mesothelial cell senescence and peritoneal fibrosis by inhibiting mitophagy through repression of OXR1. Li S; Zhuang Y; Ji Y; Chen X; He L; Chen S; Luo Y; Shen L; Xiao J; Wang H; Luo C; Peng F; Long H Free Radic Biol Med; 2024 Mar; 214():54-68. PubMed ID: 38311259 [TBL] [Abstract][Full Text] [Related]
57. Preservation of peritoneal morphology and function by pentoxifylline in a rat model of peritoneal dialysis: molecular studies. Hung KY; Huang JW; Chiang CK; Tsai TJ Nephrol Dial Transplant; 2008 Dec; 23(12):3831-40. PubMed ID: 18614818 [TBL] [Abstract][Full Text] [Related]
58. Effects of TGF-β1 Receptor Inhibitor GW788388 on the Epithelial to Mesenchymal Transition of Peritoneal Mesothelial Cells. Lho Y; Do JY; Heo JY; Kim AY; Kim SW; Kang SH Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33947038 [TBL] [Abstract][Full Text] [Related]
59. MicroRNA-129-5p modulates epithelial-to-mesenchymal transition by targeting SIP1 and SOX4 during peritoneal dialysis. Xiao L; Zhou X; Liu F; Hu C; Zhu X; Luo Y; Wang M; Xu X; Yang S; Kanwar YS; Sun L Lab Invest; 2015 Jul; 95(7):817-832. PubMed ID: 25961171 [TBL] [Abstract][Full Text] [Related]
60. MiR-200a ameliorates peritoneal fibrosis and functional deterioration in a rat model of peritoneal dialysis. Wei X; Bao Y; Zhan X; Zhang L; Hao G; Zhou J; Chen Q Int Urol Nephrol; 2019 May; 51(5):889-896. PubMed ID: 30888602 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]