These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 36998669)

  • 1. Self-assembled supramolecular artificial light-harvesting nanosystems: construction, modulation, and applications.
    Chen XM; Chen X; Hou XF; Zhang S; Chen D; Li Q
    Nanoscale Adv; 2023 Mar; 5(7):1830-1852. PubMed ID: 36998669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial light-harvesting systems based on macrocycle-assisted supramolecular assembly in aqueous media.
    Wang K; Velmurugan K; Li B; Hu XY
    Chem Commun (Camb); 2021 Dec; 57(100):13641-13654. PubMed ID: 34871337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Artificial Light-Harvesting System based on Supramolecular AIEgen Assembly.
    Jia D; Luo Q; Liu S; Hou C; Liu J
    Chemistry; 2024 Jul; ():e202402438. PubMed ID: 39022852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.
    Ensslen P; Wagenknecht HA
    Acc Chem Res; 2015 Oct; 48(10):2724-33. PubMed ID: 26411920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular polymers based on host-guest interactions for the construction of artificial light-harvesting systems.
    Wang Y; Xu J; Wang R; Liu H; Yu S; Xing LB
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121402. PubMed ID: 35636137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril.
    Luo Y; Zhang W; Ren Q; Tao Z; Xiao X
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29806-29812. PubMed ID: 35748110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient Artificial Light-Harvesting Systems Constructed in Aqueous Solution Based on Supramolecular Self-Assembly.
    Guo S; Song Y; He Y; Hu XY; Wang L
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3163-3167. PubMed ID: 29383817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Supramolecular Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Photochemical Catalysis.
    Hao M; Sun G; Zuo M; Xu Z; Chen Y; Hu XY; Wang L
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):10095-10100. PubMed ID: 31625651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired polymeric supramolecular columns as efficient yet controllable artificial light-harvesting platform.
    Mu B; Hao X; Luo X; Yang Z; Lu H; Tian W
    Nat Commun; 2024 Jan; 15(1):903. PubMed ID: 38291054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphiphilicity-Controlled Polychromatic Emissive Supramolecular Self-Assemblies for Highly Sensitive and Efficient Artificial Light-Harvesting Systems.
    Chen XM; Cao KW; Bisoyi HK; Zhang S; Qian N; Guo L; Guo DS; Yang H; Li Q
    Small; 2022 Oct; 18(42):e2204360. PubMed ID: 36135778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pt(II)/Pd(II)-Based Metallosupramolecular Architectures as Light Harvesting Systems and their Applications.
    Bokotial D; Acharyya K; Chowdhury A; Mukherjee PS
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202401136. PubMed ID: 38379203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting.
    Woller JG; Hannestad JK; Albinsson B
    J Am Chem Soc; 2013 Feb; 135(7):2759-68. PubMed ID: 23350631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new strategy for constructing artificial light-harvesting systems: supramolecular self-assembly gels with AIE properties.
    Ma X; Yue J; Wang Y; Gao Y; Qiao B; Feng E; Li Z; Ye F; Han X
    Soft Matter; 2021 Jun; 17(23):5666-5670. PubMed ID: 34095929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient artificial light-harvesting system constructed from supramolecular polymers with AIE property.
    Xiao T; Shen Y; Bao C; Diao K; Ren D; Qian H; Zhang L
    RSC Adv; 2021 Sep; 11(48):30041-30045. PubMed ID: 35480273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile Red.
    Xiao T; Wu H; Sun G; Diao K; Wei X; Li ZY; Sun XQ; Wang L
    Chem Commun (Camb); 2020 Oct; 56(80):12021-12024. PubMed ID: 32901631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-directed artificial light-harvesting antenna.
    Dutta PK; Varghese R; Nangreave J; Lin S; Yan H; Liu Y
    J Am Chem Soc; 2011 Aug; 133(31):11985-93. PubMed ID: 21714548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Covalent Dimer as Donor Chromophore for Constructing Artificial Light-Harvesting System in Water.
    Zhang L; Qian H; Wu Z; Zhang Q; Li S; Cheng M; Xiao T
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G-quartet-based nanostructure for mimicking light-harvesting antenna.
    Pu F; Wu L; Ran X; Ren J; Qu X
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):892-6. PubMed ID: 25423890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Artificial Light-Harvesting System with Controllable Efficiency Enabled by an Annulene-Based Anisotropic Fluid.
    Yu Z; Bisoyi HK; Chen XM; Nie ZZ; Wang M; Yang H; Li Q
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202200466. PubMed ID: 35100478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.