These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 36998669)

  • 21. Protein-Based Model for Energy Transfer between Photosynthetic Light-Harvesting Complexes Is Constructed Using a Direct Protein-Protein Conjugation Strategy.
    Bischoff AJ; Hamerlynck LM; Li AJ; Roberts TD; Ginsberg NS; Francis MB
    J Am Chem Soc; 2023 Jul; 145(29):15827-15837. PubMed ID: 37438911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA-based supramolecular artificial light harvesting complexes.
    Kumar CV; Duff MR
    J Am Chem Soc; 2009 Nov; 131(44):16024-6. PubMed ID: 19845378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A bioinspired sequential energy transfer system constructed via supramolecular copolymerization.
    Han Y; Zhang X; Ge Z; Gao Z; Liao R; Wang F
    Nat Commun; 2022 Jun; 13(1):3546. PubMed ID: 35729110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzyme-Triggered Defined Protein Nanoarrays: Efficient Light-Harvesting Systems to Mimic Chloroplasts.
    Zhao L; Zou H; Zhang H; Sun H; Wang T; Pan T; Li X; Bai Y; Qiao S; Luo Q; Xu J; Hou C; Liu J
    ACS Nano; 2017 Jan; 11(1):938-945. PubMed ID: 28051843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronous Imaging in Golgi Apparatus and Lysosome Enabled by Amphiphilic Calixarene-Based Artificial Light-Harvesting Systems.
    Hou XF; Zhang S; Chen X; Bisoyi HK; Xu T; Liu J; Chen D; Chen XM; Li Q
    ACS Appl Mater Interfaces; 2022 May; 14(19):22443-22453. PubMed ID: 35513893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of aggregation-induced emission photosensitizers through host-guest interactions for photooxidation reaction and light-harvesting.
    Zhang RZ; Liu H; Xin CL; Han N; Ma CQ; Yu S; Wang YB; Xing LB
    J Colloid Interface Sci; 2023 Dec; 651():894-901. PubMed ID: 37573735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Supramolecular Artificial Light-Harvesting System with an Ultrahigh Antenna Effect.
    Li JJ; Chen Y; Yu J; Cheng N; Liu Y
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28585340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constructing Artificial Light-Harvesting Systems by Covalent Alignment of Aggregation-Induced Emission Molecules.
    Liu S; Jiang S; Xu J; Huang Z; Li F; Fan X; Luo Q; Tian W; Liu J; Xu B
    Macromol Rapid Commun; 2019 May; 40(9):e1800892. PubMed ID: 30791167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multichromophoric organic molecules encapsulated in polymer nanoparticles for artificial light harvesting.
    Bhattacharyya S; Jana B; Patra A
    Chemphyschem; 2015 Mar; 16(4):796-804. PubMed ID: 25600650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust excitons inhabit soft supramolecular nanotubes.
    Eisele DM; Arias DH; Fu X; Bloemsma EA; Steiner CP; Jensen RA; Rebentrost P; Eisele H; Tokmakoff A; Lloyd S; Nelson KA; Nicastro D; Knoester J; Bawendi MG
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):E3367-75. PubMed ID: 25092336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supramolecular Energy Materials.
    Dumele O; Chen J; Passarelli JV; Stupp SI
    Adv Mater; 2020 Apr; 32(17):e1907247. PubMed ID: 32162428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization.
    Kumar A; Saha R; Mukherjee PS
    Chem Sci; 2021 Mar; 12(14):5319-5329. PubMed ID: 34163765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supramolecular assemblies working as both artificial light-harvesting system and nanoreactor for efficient organic dehalogenation in aqueous environment.
    Li X; Yu S; Shen Z; Wang R; Zhang W; Núñez-Delgado A; Han N; Xing LB
    J Colloid Interface Sci; 2022 Jul; 617():118-128. PubMed ID: 35272165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of Covalent Organic Cages with Aggregation-Induced Emission Characteristics from Metallacages for Mimicking Light-Harvesting Antenna.
    Qin Y; Ling QH; Wang YT; Hu YX; Hu L; Zhao X; Wang D; Yang HB; Xu L; Tang BZ
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202308210. PubMed ID: 37452485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide-Modulated Self-Assembly of Chromophores toward Biomimetic Light-Harvesting Nanoarchitectonics.
    Zou Q; Liu K; Abbas M; Yan X
    Adv Mater; 2016 Feb; 28(6):1031-43. PubMed ID: 26273821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porphyrin-Based Supramolecular Nanoarchitectures for Solar Energy Conversion.
    Hasobe T
    J Phys Chem Lett; 2013 Jun; 4(11):1771-80. PubMed ID: 26283108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocatalytic Systems for CO
    Kumagai H; Tamaki Y; Ishitani O
    Acc Chem Res; 2022 Apr; 55(7):978-990. PubMed ID: 35255207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photo-induced energy transfer within donor-acceptor dipeptides: Towards an artificial light-harvesting hydrogel system.
    Wang X; Zhou W; Xu R; Xu Y; Song H; Li H; Wang J
    J Colloid Interface Sci; 2023 Sep; 645():466-471. PubMed ID: 37156155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mimicking the Energy Funnel of the Photosynthetic Unit Using a Dendrimer-Dye Supramolecular Assembly.
    Rama Krishna VS; Adak S; Jana P; Bheemireddy V; Bandyopadhyay S
    Chem Asian J; 2021 Nov; 16(21):3481-3486. PubMed ID: 34487427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.