These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36998791)

  • 1. Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion.
    Vallabh CKP; Zhao X
    3D Print Addit Manuf; 2023 Feb; 10(1):101-110. PubMed ID: 36998791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography.
    Kim FH; Yeung H; Garboczi EJ
    Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion.
    Lane B; Whitenton E; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing.
    Yeung H; Lane B; Fox J
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient Laser Energy Absorption, Co-axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology.
    Lane B; Zhirnov I; Mekhontsev S; Grantham S; Ricker R; Rauniyar S; Chou K
    Addit Manuf; 2020 Dec; 36():. PubMed ID: 34141601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrometric-Based Melt Pool Monitoring Study of CuCr1Zr Processed Using L-PBF.
    Artzt K; Siggel M; Kleinert J; Riccius J; Requena G; Haubrich J
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling.
    Booth BG; Heylen R; Nourazar M; Verhees D; Philips W; Bey-Temsamani A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A residual heat compensation based scan strategy for powder bed fusion additive manufacturing.
    Yeung H; Lane B
    Manuf Lett; 2020; 25():. PubMed ID: 34123726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the influence of non-uniform gas speed on the melt pool depth in laser powder bed fusion additive manufacturing.
    Weaver JS; Schlenoff A; Deisenroth D; Moylan S
    Rapid Prototyp J; 2023 Aug; 29(8):. PubMed ID: 38486812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing.
    Zhang Z; Zhang T; Sun C; Karna S; Yuan L
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces.
    Ikeshoji TT; Yonehara M; Kato C; Yanaga Y; Takeshita K; Kyogoku H
    Sci Rep; 2022 Nov; 12(1):20384. PubMed ID: 36437289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion.
    Hojjatzadeh SMH; Guo Q; Parab ND; Qu M; Escano LI; Fezzaa K; Everhart W; Sun T; Chen L
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hardness Prediction of Laser Powder Bed Fusion Product Based on Melt Pool Radiation Intensity.
    Zhang T; Zhou X; Zhang P; Duan Y; Cheng X; Wang X; Ding G
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation.
    Ur Rehman A; Mahmood MA; Pitir F; Salamci MU; Popescu AC; Mihailescu IN
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates.
    Lane B; Heigel J; Ricker R; Zhirnov I; Khromschenko V; Weaver J; Phan T; Stoudt M; Mekhontsev S; Levine L
    Integr Mater Manuf Innov; 2020; 9(1):. PubMed ID: 34123701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Electrical Resistance Diagnostic for Conductivity Monitoring in Laser Powder Bed Fusion.
    Mukherjee S; Benavidez E; Crumb M; Calta NP
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and 1000 °C: Operando Study.
    Ur Rehman A; Pitir F; Salamci MU
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size.
    Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pandora's Box-Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V.
    Artzt K; Mishurova T; Bauer PP; Gussone J; Barriobero-Vila P; Evsevleev S; Bruno G; Requena G; Haubrich J
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32731434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.