These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 36999622)
1. Revisited relativistic Dirac-Hartree-Fock X-ray scattering factors. II. Chemically relevant cations and selected monovalent anions for atoms with Z = 3-112. Olukayode S; Froese Fischer C; Volkov A Acta Crystallogr A Found Adv; 2023 May; 79(Pt 3):229-245. PubMed ID: 36999622 [TBL] [Abstract][Full Text] [Related]
2. Revisited relativistic Dirac-Hartree-Fock X-ray scattering factors. I. Neutral atoms with Z = 2-118. Olukayode S; Froese Fischer C; Volkov A Acta Crystallogr A Found Adv; 2023 Jan; 79(Pt 1):59-79. PubMed ID: 36601764 [TBL] [Abstract][Full Text] [Related]
3. Relativistic analytical wave functions and scattering factors for neutral atoms beyond Kr and for all chemically important ions up to I-. Macchi P; Coppens P Acta Crystallogr A; 2001 Nov; 57(Pt 6):656-62. PubMed ID: 11679695 [TBL] [Abstract][Full Text] [Related]
4. Atomic scattering factors for K-shell and L-shell ionization by fast electrons. Oxley MP; Allen LJ Acta Crystallogr A; 2000 Sep; 56 (Pt 5)():470-90. PubMed ID: 10967525 [TBL] [Abstract][Full Text] [Related]
5. Atomic scattering factors for K-shell electron energy-loss spectroscopy. Oxley MP; Allen LJ Acta Crystallogr A; 2001 Nov; 57(Pt 6):713-28. PubMed ID: 11679703 [TBL] [Abstract][Full Text] [Related]
6. Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions. Kelley MS; Shiozaki T J Chem Phys; 2013 May; 138(20):204113. PubMed ID: 23742460 [TBL] [Abstract][Full Text] [Related]
7. Can X-ray constrained Hartree-Fock wavefunctions retrieve electron correlation? Genoni A; Dos Santos LH; Meyer B; Macchi P IUCrJ; 2017 Mar; 4(Pt 2):136-146. PubMed ID: 28250952 [TBL] [Abstract][Full Text] [Related]
8. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects. Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528 [TBL] [Abstract][Full Text] [Related]
9. Relativistic quantum calculations to understand the contribution of f-type atomic orbitals and chemical bonding of actinides with organic ligands. Zapata-Escobar AD; Pakhira S; Barroso-Flores J; Aucar GA; Mendoza-Cortes JL Phys Chem Chem Phys; 2023 Feb; 25(7):5592-5601. PubMed ID: 36727265 [TBL] [Abstract][Full Text] [Related]
10. Electron correlation within the relativistic no-pair approximation. Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084 [TBL] [Abstract][Full Text] [Related]
11. Relativistic Effects in the Electronic Structure of Atoms. Tatewaki H; Yamamoto S; Hatano Y ACS Omega; 2017 Sep; 2(9):6072-6080. PubMed ID: 31457856 [TBL] [Abstract][Full Text] [Related]
12. On the performance of two-component energy-consistent pseudopotentials in atomic Fock-space coupled cluster calculations. Figgen D; Wedig A; Stoll H; Dolg M; Eliav E; Kaldor U J Chem Phys; 2008 Jan; 128(2):024106. PubMed ID: 18205442 [TBL] [Abstract][Full Text] [Related]
13. Multiconfiguration Dirac-Hartree-Fock adjusted energy-consistent pseudopotential for uranium: spin-orbit configuration interaction and Fock-space coupled-cluster study of U4+ and U5+. Weigand A; Cao X; Vallet V; Flament JP; Dolg M J Phys Chem A; 2009 Oct; 113(43):11509-16. PubMed ID: 19601603 [TBL] [Abstract][Full Text] [Related]
15. Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals. Xu X; Truhlar DG J Chem Theory Comput; 2012 Jan; 8(1):80-90. PubMed ID: 26592870 [TBL] [Abstract][Full Text] [Related]
16. Scalar Breit interaction for molecular calculations. Sun S; Ehrman J; Zhang T; Sun Q; Dyall KG; Li X J Chem Phys; 2023 May; 158(17):. PubMed ID: 37139994 [TBL] [Abstract][Full Text] [Related]
17. Fourth-order relativistic corrections to electrical first-order properties using direct perturbation theory. Stopkowicz S; Gauss J J Chem Phys; 2011 May; 134(20):204106. PubMed ID: 21639423 [TBL] [Abstract][Full Text] [Related]
18. Quantum similarity study of atomic density functions: insights from information theory and the role of relativistic effects. Borgoo A; Godefroid M; Indelicato P; De Proft F; Geerlings P J Chem Phys; 2007 Jan; 126(4):044102. PubMed ID: 17286457 [TBL] [Abstract][Full Text] [Related]
19. Breit interaction contribution to parity violating potentials in chiral molecules containing light nuclei. Berger R J Chem Phys; 2008 Oct; 129(15):154105. PubMed ID: 19045174 [TBL] [Abstract][Full Text] [Related]
20. Relativistic energy-consistent pseudopotentials for superheavy elements 119 and 120 including quantum electrodynamic effects. Hangele T; Dolg M; Schwerdtfeger P J Chem Phys; 2013 May; 138(17):174113. PubMed ID: 23656120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]