These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36999672)

  • 1. Boronic Acid Assisted Self-Assembly of Functional RNAs.
    Lelièvre-Büttner A; Schnarr T; Debiais M; Smietana M; Müller S
    Chemistry; 2023 Jun; 29(35):e202300196. PubMed ID: 36999672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimuli-Responsive Boronate Formation to Control Nucleic Acid-Based Functional Architectures.
    Smietana M; Müller S
    Chempluschem; 2024 Feb; 89(2):e202300613. PubMed ID: 38033190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly.
    Bull SD; Davidson MG; van den Elsen JM; Fossey JS; Jenkins AT; Jiang YB; Kubo Y; Marken F; Sakurai K; Zhao J; James TD
    Acc Chem Res; 2013 Feb; 46(2):312-26. PubMed ID: 23148559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boronic Acid-Mediated Activity Control of Split 10-23 DNAzymes.
    Debiais M; Lelievre A; Vasseur JJ; Müller S; Smietana M
    Chemistry; 2021 Jan; 27(3):1138-1144. PubMed ID: 33058268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of the Reversible Boronic Acids/Boronate Switch to Nucleic Acids.
    Debiais M; Vasseur JJ; Smietana M
    Chem Rec; 2022 Aug; 22(8):e202200085. PubMed ID: 35641415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes.
    Hegg LA; Fedor MJ
    Biochemistry; 1995 Dec; 34(48):15813-28. PubMed ID: 7495813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and NMR characterization of reversible head-to-tail boronate-linked macrocyclic nucleic acids.
    Debiais M; Gimenez Molina A; Müller S; Vasseur JJ; Barvik I; Baraguey C; Smietana M
    Org Biomol Chem; 2022 Apr; 20(14):2889-2895. PubMed ID: 35319560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-based boronate internucleosidic linkages: an entry into reversible templated ligation and loop formation.
    Gimenez Molina A; Barvik I; Müller S; Vasseur JJ; Smietana M
    Org Biomol Chem; 2018 Nov; 16(45):8824-8830. PubMed ID: 30411775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tertiary structure stabilization promotes hairpin ribozyme ligation.
    Fedor MJ
    Biochemistry; 1999 Aug; 38(34):11040-50. PubMed ID: 10460159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of hairpin ribozyme variants for RNA recombination and splicing.
    Hieronymus R; Müller S
    Ann N Y Acad Sci; 2019 Jul; 1447(1):135-143. PubMed ID: 30941784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of primary structures of hairpin ribozymes for probing active conformations.
    Komatsu Y; Kanzaki I; Koizumi M; Ohtsuka E
    J Mol Biol; 1995 Sep; 252(3):296-304. PubMed ID: 7563051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The many faces of the hairpin ribozyme: structural and functional variants of a small catalytic RNA.
    Müller S; Appel B; Krellenberg T; Petkovic S
    IUBMB Life; 2012 Jan; 64(1):36-47. PubMed ID: 22131309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction.
    Marozas IA; Anseth KS; Cooper-White JJ
    Biomaterials; 2019 Dec; 223():119430. PubMed ID: 31493696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-domain cross-linking and molecular modelling of the hairpin ribozyme.
    Earnshaw DJ; Masquida B; Müller S; Sigurdsson ST; Eckstein F; Westhof E; Gait MJ
    J Mol Biol; 1997 Nov; 274(2):197-212. PubMed ID: 9398527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of the hairpin ribozyme.
    Fedor MJ
    J Mol Biol; 2000 Mar; 297(2):269-91. PubMed ID: 10715200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Modifications as Tools in Mechanistic Studies of the Cleavage of RNA Phosphodiester Linkages.
    Lönnberg H
    Chem Rec; 2022 Nov; 22(11):e202200141. PubMed ID: 35832010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA self-splicing by engineered hairpin ribozyme variants.
    Hieronymus R; Zhu J; Müller S
    Nucleic Acids Res; 2022 Jan; 50(1):368-377. PubMed ID: 34928378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pseudoknot ribozyme structure is active in vivo and required for hepatitis delta virus RNA replication.
    Jeng KS; Daniel A; Lai MM
    J Virol; 1996 Apr; 70(4):2403-10. PubMed ID: 8642668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of an active site adenine in hairpin ribozyme catalysis.
    Kuzmin YI; Da Costa CP; Cottrell JW; Fedor MJ
    J Mol Biol; 2005 Jun; 349(5):989-1010. PubMed ID: 15907933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient RNA ligation by reverse-joined hairpin ribozymes and engineering of twin ribozymes consisting of conventional and reverse-joined hairpin ribozyme units.
    Ivanov SA; Vauléon S; Müller S
    FEBS J; 2005 Sep; 272(17):4464-74. PubMed ID: 16128815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.