BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36999753)

  • 1. Artifact removal for unpaired thorax CBCT images using a feature fusion residual network and contextual loss.
    Zhuang W; Li Z; Liu H; Ying H; Yan M
    J Appl Clin Med Phys; 2023 Jul; 24(7):e13968. PubMed ID: 36999753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contextual loss based artifact removal method on CBCT image.
    Xie S; Liang Y; Yang T; Song Z
    J Appl Clin Med Phys; 2020 Dec; 21(12):166-177. PubMed ID: 33136307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical scatter correction: CBCT scatter artifact reduction without prior information.
    Trapp P; Maier J; Susenburger M; Sawall S; Kachelrieß M
    Med Phys; 2022 Jul; 49(7):4566-4584. PubMed ID: 35390181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy.
    Gao L; Xie K; Sun J; Lin T; Sui J; Yang G; Ni X
    Med Phys; 2023 Feb; 50(2):879-893. PubMed ID: 36183234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An unsupervised dual contrastive learning framework for scatter correction in cone-beam CT image.
    Wang T; Liu X; Dai J; Zhang C; He W; Liu L; Chan Y; He Y; Zhao H; Xie Y; Liang X
    Comput Biol Med; 2023 Oct; 165():107377. PubMed ID: 37651766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed large-area focused grid for scatter reduction in cone-beam CT.
    Cobos SF; Norley CJ; Nikolov HN; Holdsworth DW
    Med Phys; 2023 Jan; 50(1):240-258. PubMed ID: 36215176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artifact suppression for breast specimen imaging in micro CBCT using deep learning.
    Aootaphao S; Puttawibul P; Thajchayapong P; Thongvigitmanee SS
    BMC Med Imaging; 2024 Feb; 24(1):34. PubMed ID: 38321390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CT-CBCT deformable registration using weakly-supervised artifact-suppression transfer learning network.
    Tian D; Sun G; Zheng H; Yu S; Jiang J
    Phys Med Biol; 2023 Aug; 68(16):. PubMed ID: 37433303
    [No Abstract]   [Full Text] [Related]  

  • 10. A new dental CBCT metal artifact reduction method based on a dual-domain processing framework.
    Tang H; Lin YB; Jiang SD; Li Y; Li T; Bao XD
    Phys Med Biol; 2023 Aug; 68(17):. PubMed ID: 37524084
    [No Abstract]   [Full Text] [Related]  

  • 11. A novel total variation based ring artifact suppression method for CBCT imaging with two-dimensional antiscatter grids.
    Alexeev T; Kavanagh B; Miften M; Altunbas C
    Med Phys; 2019 May; 46(5):2181-2193. PubMed ID: 30802970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.
    Zhang Z; Liu J; Yang D; Kamilov US; Hugo GD
    Med Phys; 2023 Feb; 50(2):808-820. PubMed ID: 36412165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction of motion artifacts in cone-beam CT using a patient-specific respiratory motion model.
    Zhang Q; Hu YC; Liu F; Goodman K; Rosenzweig KE; Mageras GS
    Med Phys; 2010 Jun; 37(6):2901-9. PubMed ID: 20632601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative image-domain ring artifact removal in cone-beam CT.
    Liang X; Zhang Z; Niu T; Yu S; Wu S; Li Z; Zhang H; Xie Y
    Phys Med Biol; 2017 Jul; 62(13):5276-5292. PubMed ID: 28585520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image-domain shading correction for cone-beam CT without prior patient information.
    Fan Q; Lu B; Park JC; Niu T; Li JG; Liu C; Zhu L
    J Appl Clin Med Phys; 2015 Nov; 16(6):65-75. PubMed ID: 26699555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized image quality improvement strategy of cone-beam CT using multiple spectral CT labels in Pix2pix GAN.
    Jiang Y; Zhang Y; Luo C; Yang P; Wang J; Liang X; Zhao W; Li R; Niu T
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35487206
    [No Abstract]   [Full Text] [Related]  

  • 18. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images.
    Niu T; Sun M; Star-Lack J; Gao H; Fan Q; Zhu L
    Med Phys; 2010 Oct; 37(10):5395-406. PubMed ID: 21089775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography.
    Harms J; Lei Y; Wang T; Zhang R; Zhou J; Tang X; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Sep; 46(9):3998-4009. PubMed ID: 31206709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-planar 2.5D U-Net for image quality enhancement of dental cone-beam CT.
    Ryu K; Lee C; Han Y; Pang S; Kim YH; Choi C; Jang I; Han SS
    PLoS One; 2023; 18(5):e0285608. PubMed ID: 37167217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.