These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37000166)

  • 1. Cooperative driver pathways discovery by multiplex network embedding.
    Wang J; Chen X; Wu Z; Guo M; Yu G
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37000166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative driver pathway discovery via fusion of multi-relational data of genes, miRNAs and pathways.
    Wang J; Yang Z; Domeniconi C; Zhang X; Yu G
    Brief Bioinform; 2021 Mar; 22(2):1984-1999. PubMed ID: 32103253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDPath: Cooperative Driver Pathways Discovery Using Integer Linear Programming and Markov Clustering.
    Yang Z; Yu G; Guo M; Yu J; Zhang X; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1384-1395. PubMed ID: 31581094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighted deep factorizing heterogeneous molecular network for genome-phenome association prediction.
    Tan H; Qiu S; Wang J; Yu G; Guo W; Guo M
    Methods; 2022 Sep; 205():18-28. PubMed ID: 35690250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BRCA-Pathway: a structural integration and visualization system of TCGA breast cancer data on KEGG pathways.
    Kim I; Choi S; Kim S
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):42. PubMed ID: 29504910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of co-occurring driver pathways in cancer.
    Zhang J; Wu LY; Zhang XS; Zhang S
    BMC Bioinformatics; 2014 Aug; 15(1):271. PubMed ID: 25106096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of cancer common and specific driver gene sets.
    Zhang J; Zhang S
    Nucleic Acids Res; 2017 Jun; 45(10):e86. PubMed ID: 28168295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network.
    Xi J; Wang M; Li A
    BMC Bioinformatics; 2018 Jun; 19(1):214. PubMed ID: 29871594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network embedding framework for driver gene discovery by combining functional and structural information.
    Chu X; Guan B; Dai L; Liu JX; Li F; Shang J
    BMC Genomics; 2023 Jul; 24(1):426. PubMed ID: 37516822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network.
    Zhang SW; Wang ZN; Li Y; Guo WF
    BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NESM: a network embedding method for tumor stratification by integrating multi-omics data.
    Li F; Sun Z; Liu JX; Shang J; Dai L; Liu X; Li Y
    G3 (Bethesda); 2022 Nov; 12(11):. PubMed ID: 36124952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying mutated driver pathways in cancer by integrating multi-omics data.
    Wu J; Cai Q; Wang J; Liao Y
    Comput Biol Chem; 2019 Jun; 80():159-167. PubMed ID: 30959272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.