These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37000166)

  • 21. A functional analysis of omic network embedding spaces reveals key altered functions in cancer.
    Doria-Belenguer S; Xenos A; Ceddia G; Malod-Dognin N; Pržulj N
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient methods for identifying mutated driver pathways in cancer.
    Zhao J; Zhang S; Wu LY; Zhang XS
    Bioinformatics; 2012 Nov; 28(22):2940-7. PubMed ID: 22982574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Efficient and Easy-to-Use Network-Based Integrative Method of Multi-Omics Data for Cancer Genes Discovery.
    Wei T; Fa B; Luo C; Johnston L; Zhang Y; Yu Z
    Front Genet; 2020; 11():613033. PubMed ID: 33488678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An omics-to-omics joint knowledge association subtensor model for radiogenomics cross-modal modules from genomics and ultrasonic images of breast cancers.
    Xi J; Sun D; Chang C; Zhou S; Huang Q
    Comput Biol Med; 2023 Mar; 155():106672. PubMed ID: 36805226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-occurrence and mutual exclusivity: what cross-cancer mutation patterns can tell us.
    El Tekle G; Bernasocchi T; Unni AM; Bertoni F; Rossi D; Rubin MA; Theurillat JP
    Trends Cancer; 2021 Sep; 7(9):823-836. PubMed ID: 34031014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Driver network as a biomarker: systematic integration and network modeling of multi-omics data to derive driver signaling pathways for drug combination prediction.
    Huang L; Brunell D; Stephan C; Mancuso J; Yu X; He B; Thompson TC; Zinner R; Kim J; Davies P; Wong STC
    Bioinformatics; 2019 Oct; 35(19):3709-3717. PubMed ID: 30768150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic cancer drivers: a causal approach for cancer driver discovery based on bio-pathological trajectories.
    Cifuentes-Bernal AM; Pham VVH; Li X; Liu L; Li J; Duy Le T
    Brief Funct Genomics; 2022 Nov; 21(6):455-465. PubMed ID: 36124841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Individualized discovery of rare cancer drivers in global network context.
    Petrov I; Alexeyenko A
    Elife; 2022 May; 11():. PubMed ID: 35593700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep Pathway Analysis V2.0: A Pathway Analysis Framework Incorporating Multi-Dimensional Omics Data.
    Zhao Y; Shin DG
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):373-385. PubMed ID: 31603796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Multi-Omics Characteristics on Identification of Driver Genes Using Machine Learning Algorithms.
    Li F; Chu X; Dai L; Wang J; Liu J; Shang J
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating multi-type aberrations from DNA and RNA through dynamic mapping gene space for subtype-specific breast cancer driver discovery.
    Xi J; Deng Z; Liu Y; Wang Q; Shi W
    PeerJ; 2023; 11():e14843. PubMed ID: 36755866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying cellular cancer mechanisms through pathway-driven data integration.
    Windels SFL; Malod-Dognin N; Pržulj N
    Bioinformatics; 2022 Sep; 38(18):4344-4351. PubMed ID: 35916710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying potential cancer driver genes by genomic data integration.
    Chen Y; Hao J; Jiang W; He T; Zhang X; Jiang T; Jiang R
    Sci Rep; 2013 Dec; 3():3538. PubMed ID: 24346768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cooperative genomic alteration network reveals molecular classification across 12 major cancer types.
    Zhang H; Deng Y; Zhang Y; Ping Y; Zhao H; Pang L; Zhang X; Wang L; Xu C; Xiao Y; Li X
    Nucleic Acids Res; 2017 Jan; 45(2):567-582. PubMed ID: 27899621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.