These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 37000187)
1. All-atom simulations of the trimeric spike protein of SARS-CoV-2 in aqueous medium: Nature of interactions, conformational stability and free energy diagrams for conformational transition of the protein. Panthi B; Dutta S; Chandra A J Comput Chem; 2023 Jun; 44(17):1560-1577. PubMed ID: 37000187 [TBL] [Abstract][Full Text] [Related]
2. All-Atom Simulations of Human ACE2-Spike Protein RBD Complexes for SARS-CoV-2 and Some of its Variants: Nature of Interactions and Free Energy Diagrams for Dissociation of the Protein Complexes. Dutta S; Panthi B; Chandra A J Phys Chem B; 2022 Jul; 126(29):5375-5389. PubMed ID: 35833966 [TBL] [Abstract][Full Text] [Related]
3. Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states. Peters MH; Bastidas O; Kokron DS; Henze CE PLoS One; 2020; 15(11):e0241168. PubMed ID: 33170884 [TBL] [Abstract][Full Text] [Related]
4. Conformational transition of SARS-CoV-2 spike glycoprotein between its closed and open states. Gur M; Taka E; Yilmaz SZ; Kilinc C; Aktas U; Golcuk M J Chem Phys; 2020 Aug; 153(7):075101. PubMed ID: 32828084 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic Origin of Different Binding Affinities of SARS-CoV and SARS-CoV-2 Spike RBDs to Human ACE2. Zhang ZB; Xia YL; Shen JX; Du WW; Fu YX; Liu SQ Cells; 2022 Apr; 11(8):. PubMed ID: 35455955 [TBL] [Abstract][Full Text] [Related]
6. SARS-CoV-2 spike opening dynamics and energetics reveal the individual roles of glycans and their collective impact. Pang YT; Acharya A; Lynch DL; Pavlova A; Gumbart JC Commun Biol; 2022 Nov; 5(1):1170. PubMed ID: 36329138 [TBL] [Abstract][Full Text] [Related]
7. Static All-Atom Energetic Mappings of the SARS-Cov-2 Spike Protein with Potential Latch Identification of the Down State Protomer. Peters MH; Bastidas O; Kokron DS; Henze C bioRxiv; 2020 Jun; ():. PubMed ID: 32511362 [TBL] [Abstract][Full Text] [Related]
8. Tackling Covid-19 using disordered-to-order transition of residues in the spike protein upon angiotensin-converting enzyme 2 binding. Yesudhas D; Srivastava A; Sekijima M; Gromiha MM Proteins; 2021 Sep; 89(9):1158-1166. PubMed ID: 33893649 [TBL] [Abstract][Full Text] [Related]
9. Investigating the binding affinity of andrographolide against human SARS-CoV-2 spike receptor-binding domain through docking and molecular dynamics simulations. Bhattarai A; Priyadharshini A; Emerson IA J Biomol Struct Dyn; 2023; 41(22):13438-13453. PubMed ID: 36764825 [TBL] [Abstract][Full Text] [Related]
10. Molecular insights into the binding variance of the SARS-CoV-2 spike with human, cat and dog ACE2 proteins. Zang Y; Li X; Zhao Y; Wang H; Hao D; Zhang L; Yang Z; Yuan X; Zhang S Phys Chem Chem Phys; 2021 Jun; 23(24):13752-13759. PubMed ID: 34132301 [TBL] [Abstract][Full Text] [Related]
11. Omicron BA.1 and BA.2 variants increase the interactions of SARS-CoV-2 spike glycoprotein with ACE2. Golcuk M; Yildiz A; Gur M J Mol Graph Model; 2022 Dec; 117():108286. PubMed ID: 35964366 [TBL] [Abstract][Full Text] [Related]
12. Key residues of the receptor binding domain in the spike protein of SARS-CoV-2 mediating the interactions with ACE2: a molecular dynamics study. Yang Y; Zhang Y; Qu Y; Zhang C; Liu XW; Zhao M; Mu Y; Li W Nanoscale; 2021 May; 13(20):9364-9370. PubMed ID: 33999091 [TBL] [Abstract][Full Text] [Related]
13. Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2: a molecular dynamics simulations study. Dehury B; Raina V; Misra N; Suar M J Biomol Struct Dyn; 2021 Nov; 39(18):7231-7245. PubMed ID: 32762417 [TBL] [Abstract][Full Text] [Related]
14. Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction. Nelson-Sathi S; Umasankar PK; Sreekumar E; Nair RR; Joseph I; Nori SRC; Philip JS; Prasad R; Navyasree KV; Ramesh S; Pillai H; Ghosh S; Santosh Kumar TR; Pillai MR BMC Mol Cell Biol; 2022 Jan; 23(1):2. PubMed ID: 34991443 [TBL] [Abstract][Full Text] [Related]
15. Electrostatic Interactions Are the Primary Determinant of the Binding Affinity of SARS-CoV-2 Spike RBD to ACE2: A Computational Case Study of Omicron Variants. Sang P; Chen YQ; Liu MT; Wang YT; Yue T; Li Y; Yin YR; Yang LQ Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499120 [TBL] [Abstract][Full Text] [Related]
16. Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor. Veeramachaneni GK; Thunuguntla VBSC; Bobbillapati J; Bondili JS J Biomol Struct Dyn; 2021 Jul; 39(11):4015-4025. PubMed ID: 32448098 [TBL] [Abstract][Full Text] [Related]
17. RBD spatial orientation of the spike protein and its binding to ACE2: insight into the high infectivity of the SARS-CoV-2 Delta variant from MD simulations. Lv N; Cao Z Phys Chem Chem Phys; 2022 Oct; 24(39):24155-24165. PubMed ID: 36168828 [TBL] [Abstract][Full Text] [Related]
18. Tetracycline as an inhibitor to the SARS-CoV-2. Zhao TY; Patankar NA J Cell Biochem; 2021 Jul; 122(7):752-759. PubMed ID: 33619758 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics analysis of a flexible loop at the binding interface of the SARS-CoV-2 spike protein receptor-binding domain. Williams JK; Wang B; Sam A; Hoop CL; Case DA; Baum J Proteins; 2022 May; 90(5):1044-1053. PubMed ID: 34375467 [TBL] [Abstract][Full Text] [Related]
20. Probing structural basis for enhanced binding of SARS-CoV-2 P.1 variant spike protein with the human ACE2 receptor. Lata S; Akif M J Cell Biochem; 2022 Jul; 123(7):1207-1221. PubMed ID: 35620980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]