These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37000211)
21. Requirements for prediction of peptide retention time in reversed-phase high-performance liquid chromatography: hydrophilicity/hydrophobicity of side-chains at the N- and C-termini of peptides are dramatically affected by the end-groups and location. Tripet B; Cepeniene D; Kovacs JM; Mant CT; Krokhin OV; Hodges RS J Chromatogr A; 2007 Feb; 1141(2):212-25. PubMed ID: 17187811 [TBL] [Abstract][Full Text] [Related]
22. Visualization and application of amino acid retention coefficients obtained from modeling of peptide retention. Mohammed Y; Palmblad M J Sep Sci; 2018 Sep; 41(18):3644-3653. PubMed ID: 30047222 [TBL] [Abstract][Full Text] [Related]
23. Protein identification assisted by the prediction of retention time in liquid chromatography/tandem mass spectrometry. Wang Y; Zhang J; Gu X; Zhang XM J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov; 826(1-2):122-8. PubMed ID: 16159714 [TBL] [Abstract][Full Text] [Related]
24. Peptide separation selectivity in proteomics LC-MS experiments: Comparison of formic and mixed formic/heptafluorobutyric acids ion-pairing modifiers. Gussakovsky D; Anderson G; Spicer V; Krokhin OV J Sep Sci; 2020 Oct; 43(20):3830-3839. PubMed ID: 32818315 [TBL] [Abstract][Full Text] [Related]
25. Identification of umami-tasting peptides from Volvariella volvacea using ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry and sensory-guided separation techniques. Xu X; Xu R; Song Z; Jia Q; Feng T; Huang M; Song S J Chromatogr A; 2019 Jul; 1596():96-103. PubMed ID: 30871753 [TBL] [Abstract][Full Text] [Related]
26. Isolation and identification of the umami peptides from shiitake mushroom by consecutive chromatography and LC-Q-TOF-MS. Kong Y; Zhang LL; Zhao J; Zhang YY; Sun BG; Chen HT Food Res Int; 2019 Jul; 121():463-470. PubMed ID: 31108770 [TBL] [Abstract][Full Text] [Related]
28. Prediction of liquid chromatographic retention time using quantitative structure-retention relationships to assist non-targeted identification of unknown metabolites of phthalates in human urine with high-resolution mass spectrometry. Meshref S; Li Y; Feng YL J Chromatogr A; 2020 Dec; 1634():461691. PubMed ID: 33221657 [TBL] [Abstract][Full Text] [Related]
29. Distinguishing and quantifying peptides and proteins containing D-amino acids by tandem mass spectrometry. Adams CM; Zubarev RA Anal Chem; 2005 Jul; 77(14):4571-80. PubMed ID: 16013875 [TBL] [Abstract][Full Text] [Related]
30. Prediction of LC-MS/MS Properties of Peptides from Sequence by Deep Learning. Guan S; Moran MF; Ma B Mol Cell Proteomics; 2019 Oct; 18(10):2099-2107. PubMed ID: 31249099 [TBL] [Abstract][Full Text] [Related]
32. An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase HPLC: its application to protein peptide mapping by off-line HPLC-MALDI MS. Krokhin OV; Craig R; Spicer V; Ens W; Standing KG; Beavis RC; Wilkins JA Mol Cell Proteomics; 2004 Sep; 3(9):908-19. PubMed ID: 15238601 [TBL] [Abstract][Full Text] [Related]
33. [Application of peptide retention time in proteome research]. Shao C; Gao Y Se Pu; 2010 Feb; 28(2):128-34. PubMed ID: 20556949 [TBL] [Abstract][Full Text] [Related]
34. Proteomic data mining using predicted peptide chromatographic retention times. Tripet B; Renuka Jayadev M; Blow D; Nguyen C; Hodges R; Cios K Int J Bioinform Res Appl; 2007; 3(4):431-45. PubMed ID: 18048310 [TBL] [Abstract][Full Text] [Related]
35. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion. Guan X; Brownstein NC; Young NL; Marshall AG Rapid Commun Mass Spectrom; 2017 Jan; 31(2):207-217. PubMed ID: 27813191 [TBL] [Abstract][Full Text] [Related]
36. Informatics for peptide retention properties in proteomic LC-MS. Shinoda K; Sugimoto M; Tomita M; Ishihama Y Proteomics; 2008 Feb; 8(4):787-98. PubMed ID: 18214845 [TBL] [Abstract][Full Text] [Related]
37. Application of peptide LC retention time information in a discriminant function for peptide identification by tandem mass spectrometry. Strittmatter EF; Kangas LJ; Petritis K; Mottaz HM; Anderson GA; Shen Y; Jacobs JM; Camp DG; Smith RD J Proteome Res; 2004; 3(4):760-9. PubMed ID: 15359729 [TBL] [Abstract][Full Text] [Related]
38. High-performance liquid chromatography of amino acids, peptides and proteins. CXXII. Application of experimentally derived retention coefficients to the prediction of peptide retention times: studies with myohemerythrin. Wilce MC; Aguilar MI; Hearn MT J Chromatogr; 1993 Feb; 632(1-2):11-8. PubMed ID: 8454713 [TBL] [Abstract][Full Text] [Related]
39. Continuous pH/salt gradient and peptide score for strong cation exchange chromatography in 2D-nano-LC/MS/MS peptide identification for proteomics. Winnik WM Anal Chem; 2005 Aug; 77(15):4991-8. PubMed ID: 16053314 [TBL] [Abstract][Full Text] [Related]
40. Exploiting non-linear relationships between retention time and molecular structure of peptides originating from proteomes and comparing three multivariate approaches. Žuvela P; Macur K; Jay Liu J; Bączek T J Pharm Biomed Anal; 2016 Aug; 127():94-100. PubMed ID: 26856456 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]