These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37000599)

  • 41. Two-dimensional MXO/MoX
    Sibhatu AK; Alene Asres G; Yimam A; Teshome T
    RSC Adv; 2022 Jul; 12(33):21270-21279. PubMed ID: 35975064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. First-principles study of the structural and electronic properties of tetragonal ZrOX (X = S, Se, and Te) monolayers and their vdW heterostructures for applications in optoelectronics and photocatalysis.
    Said I; Gueddida S; Barhoumi M; Pascale F; Said M; Lebègue S
    J Chem Phys; 2023 Mar; 158(9):094708. PubMed ID: 36889946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A first principles study of a van der Waals heterostructure based on MS
    Alam Q; Sardar S; Din HU; Khan SA; Idrees M; Amin B; Rehman F; Muhammad S; Laref A
    Nanoscale Adv; 2022 Aug; 4(17):3557-3565. PubMed ID: 36134356
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonlinear Optical Response in Graphene/WX
    He C; Zhao Q; Huang Y; Zhu L; Zhang S; Bai J; Xu X
    J Phys Chem Lett; 2019 May; 10(9):2090-2100. PubMed ID: 30973733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hexagonal Boron Nitride for Surface Passivation of Two-Dimensional van der Waals Heterojunction Solar Cells.
    Cho AJ; Kwon JY
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39765-39771. PubMed ID: 31577117
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlling Carrier Transport in Vertical MoTe
    Pan Y; Liu X; Yang J; Yoo WJ; Sun J
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54294-54300. PubMed ID: 34739218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two-Dimensional van der Waals Heterostructures Constructed via Perovskite (C
    Liu B; Long M; Cai MQ; Yang J
    J Phys Chem Lett; 2018 Sep; 9(17):4822-4827. PubMed ID: 30091614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A design rule for two-dimensional van der Waals heterostructures with unconventional band alignments.
    Si Y; Wu HY; Lian JC; Huang WQ; Hu WY; Huang GF
    Phys Chem Chem Phys; 2020 Feb; 22(5):3037-3047. PubMed ID: 31960006
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.
    Li C; Cao Q; Wang F; Xiao Y; Li Y; Delaunay JJ; Zhu H
    Chem Soc Rev; 2018 Jul; 47(13):4981-5037. PubMed ID: 29736528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach.
    Willhelm D; Wilson N; Arroyave R; Qian X; Cagin T; Pachter R; Qian X
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25907-25919. PubMed ID: 35622945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electronic and Optical Properties of Atomic-Scale Heterostructure Based on MXene and MN (M = Al, Ga): A DFT Investigation.
    Ren K; Zheng R; Xu P; Cheng D; Huo W; Yu J; Zhang Z; Sun Q
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578552
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The interlayer coupling modulation of a g-C
    Lin P; Xu N; Tan X; Yang X; Xiong R; Wen C; Wu B; Lin Q; Sa B
    RSC Adv; 2021 Dec; 12(2):998-1004. PubMed ID: 35425138
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.
    You B; Wang X; Zheng Z; Mi W
    Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Properties at the interface of the pristine CdSe and core-shell CdSe-ZnS quantum dots with ultrathin monolayers of two-dimensional MX
    Wang X; Liu S; Chen Y; Zheng Y; Li L
    J Mol Model; 2022 Jul; 28(8):220. PubMed ID: 35831761
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MoS
    Singh A; Jain M; Bhattacharya S
    Nanoscale Adv; 2021 May; 3(10):2837-2845. PubMed ID: 36134195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tuning the Electronic Properties of Two-Dimensional Lepidocrocite Titanium Dioxide-Based Heterojunctions.
    Asikainen K; Alatalo M; Huttula M; Sasikala Devi AA
    ACS Omega; 2023 Nov; 8(47):45056-45064. PubMed ID: 38046343
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The electric field modulation of electronic properties in a type-II phosphorene/PbI
    Wei Y; Wang F; Zhang W; Zhang X
    Phys Chem Chem Phys; 2019 Apr; 21(15):7765-7772. PubMed ID: 30916052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sb
    Wang C; Jing Y; Zhou X; Li YF
    ACS Omega; 2021 Aug; 6(31):20590-20597. PubMed ID: 34396004
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct/indirect band gap tunability in van der Waals heterojunctions based on ternary 2D materials Mo
    Zhang M; Pan J; Zhou W; Li A; Ouyang F
    J Phys Condens Matter; 2019 Dec; 31(50):505302. PubMed ID: 31469091
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Layer Rotation-Angle-Dependent Excitonic Absorption in van der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy.
    Gogoi PK; Lin YC; Senga R; Komsa HP; Wong SL; Chi D; Krasheninnikov AV; Li LJ; Breese MBH; Pennycook SJ; Wee ATS; Suenaga K
    ACS Nano; 2019 Aug; 13(8):9541-9550. PubMed ID: 31345026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.