These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37000778)
1. Synthesis of large scale 3D microscopic images of 3D cell cultures for training and benchmarking. Bruch R; Keller F; Böhland M; Vitacolonna M; Klinger L; Rudolf R; Reischl M PLoS One; 2023; 18(3):e0283828. PubMed ID: 37000778 [TBL] [Abstract][Full Text] [Related]
2. 3D fluorescence microscopy data synthesis for segmentation and benchmarking. Eschweiler D; Rethwisch M; Jarchow M; Koppers S; Stegmaier J PLoS One; 2021; 16(12):e0260509. PubMed ID: 34855812 [TBL] [Abstract][Full Text] [Related]
3. Benchmarking of deep learning algorithms for 3D instance segmentation of confocal image datasets. Kar A; Petit M; Refahi Y; Cerutti G; Godin C; Traas J PLoS Comput Biol; 2022 Apr; 18(4):e1009879. PubMed ID: 35421081 [TBL] [Abstract][Full Text] [Related]
4. Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates. Jelli E; Ohmura T; Netter N; Abt M; Jiménez-Siebert E; Neuhaus K; Rode DKH; Nadell CD; Drescher K Mol Microbiol; 2023 Jun; 119(6):659-676. PubMed ID: 37066636 [TBL] [Abstract][Full Text] [Related]
5. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches. Zhou X Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668 [TBL] [Abstract][Full Text] [Related]
6. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images. Wen C; Miura T; Voleti V; Yamaguchi K; Tsutsumi M; Yamamoto K; Otomo K; Fujie Y; Teramoto T; Ishihara T; Aoki K; Nemoto T; Hillman EM; Kimura KD Elife; 2021 Mar; 10():. PubMed ID: 33781383 [TBL] [Abstract][Full Text] [Related]
7. Segmentation in large-scale cellular electron microscopy with deep learning: A literature survey. Aswath A; Alsahaf A; Giepmans BNG; Azzopardi G Med Image Anal; 2023 Oct; 89():102920. PubMed ID: 37572414 [TBL] [Abstract][Full Text] [Related]
8. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound. Orlando N; Gyacskov I; Gillies DJ; Guo F; Romagnoli C; D'Souza D; Cool DW; Hoover DA; Fenster A Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35240585 [TBL] [Abstract][Full Text] [Related]
9. High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration. Forsgren E; Edlund C; Oliver M; Barnes K; Sjögren R; Jackson TR PLoS One; 2022; 17(5):e0264241. PubMed ID: 35588399 [TBL] [Abstract][Full Text] [Related]
10. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
11. Deep-Learning-Based Automated Neuron Reconstruction From 3D Microscopy Images Using Synthetic Training Images. Chen W; Liu M; Du H; Radojevic M; Wang Y; Meijering E IEEE Trans Med Imaging; 2022 May; 41(5):1031-1042. PubMed ID: 34847022 [TBL] [Abstract][Full Text] [Related]
12. CMC-Net: 3D calf muscle compartment segmentation with sparse annotation. Peng Y; Zheng H; Zhang L; Sonka M; Chen DZ Med Image Anal; 2022 Jul; 79():102460. PubMed ID: 35598519 [TBL] [Abstract][Full Text] [Related]
13. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768 [TBL] [Abstract][Full Text] [Related]
14. Deep learning for automatic mandible segmentation on dental panoramic x-ray images. Machado LF; Watanabe PCA; Rodrigues GA; Junior LOM Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36724498 [TBL] [Abstract][Full Text] [Related]
15. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Zhou X; Takayama R; Wang S; Hara T; Fujita H Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602 [TBL] [Abstract][Full Text] [Related]
16. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks. Subramaniam P; Kossen T; Ritter K; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D; Madai VI Med Image Anal; 2022 May; 78():102396. PubMed ID: 35231850 [TBL] [Abstract][Full Text] [Related]
17. Object recognition in medical images via anatomy-guided deep learning. Jin C; Udupa JK; Zhao L; Tong Y; Odhner D; Pednekar G; Nag S; Lewis S; Poole N; Mannikeri S; Govindasamy S; Singh A; Camaratta J; Owens S; Torigian DA Med Image Anal; 2022 Oct; 81():102527. PubMed ID: 35830745 [TBL] [Abstract][Full Text] [Related]
18. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks. Burton W; Myers C; Rullkoetter P Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580 [TBL] [Abstract][Full Text] [Related]
19. Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge. Song Y; Ren S; Lu Y; Fu X; Wong KKL Comput Methods Programs Biomed; 2022 Jun; 220():106821. PubMed ID: 35487181 [TBL] [Abstract][Full Text] [Related]
20. Terabyte-scale supervised 3D training and benchmarking dataset of the mouse kidney. Kuo W; Rossinelli D; Schulz G; Wenger RH; Hieber S; Müller B; Kurtcuoglu V Sci Data; 2023 Aug; 10(1):510. PubMed ID: 37537174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]