These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 37001024)

  • 1. Enhancing Plasmonic Hot Electron Energy on Ag Surface by Amine Coordination.
    Wang Y; Li Y; Yang X; Wang T; Du X; Zhu A; Xie W; Xie W
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318817. PubMed ID: 38224169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal-effect dominated plasmonic catalysis on silver nanoislands.
    Kong T; Kang B; Wang W; Deckert-Gaudig T; Zhang Z; Deckert V
    Nanoscale; 2024 Jun; 16(22):10745-10750. PubMed ID: 38738933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalyst-On-Hotspot Nanoarchitecture: Plasmonic Focusing of Light onto Co-Photocatalyst for Efficient Light-To-Chemical Transformation.
    Chong C; Boong SK; Raja Mogan T; Lee JK; Ang ZZ; Li H; Lee HK
    Small; 2024 Jun; 20(24):e2309983. PubMed ID: 38174596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting hot electrons from a plasmon nanohybrid system for the photoelectroreduction of CO
    Dey A; Silveira VR; Vadell RB; Lindblad A; Lindblad R; Shtender V; Görlin M; Sá J
    Commun Chem; 2024 Mar; 7(1):59. PubMed ID: 38509134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Switched Kinetics for Formic Acid Dehydrogenation: Selective Adsorption Driven by Local Field and Hot Carriers.
    Zhu J; Dai J; Xu Y; Liu X; Chen R; Wang Z; Liu H; Li G
    ChemSusChem; 2024 Jun; 17(12):e202301616. PubMed ID: 38318952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Linking Selectivity on Self-Assembled Metal-Semiconductor Nano-Hybrid Systems.
    Nguyen TLT; Gascón Nicolás A; Edvinsson T; Meng J; Zheng K; Abdellah M; Sá J
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32679795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman Monitoring of the Electro-Optical Synergy-Induced Enhancements in Carbon-Bromine Bond Cleavage, Reaction Rate, and Product Selectivity of
    Kohila Rani K; Xiao YH; Devasenathipathy R; Gao K; Wang J; Kang X; Zhu C; Chen H; Jiang L; Liu Q; Qiao F; Li Z; Wu DY; Lu G
    ACS Appl Mater Interfaces; 2024 May; 16(21):27831-27840. PubMed ID: 38757708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of crystal facets in plasmonic catalysis.
    Kang Y; João SM; Lin R; Liu K; Zhu L; Fu J; Cheong WM; Lee S; Frank K; Nickel B; Liu M; Lischner J; Cortés E
    Nat Commun; 2024 May; 15(1):3923. PubMed ID: 38724494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy.
    Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G
    ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streamlines of the Poynting Vector and Chirality Flux around a Plasmonic Bowtie Nanoantenna.
    Ku YC; Kuo MK; Liaw JW
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peeking into the Femtosecond Hot-Carrier Dynamics Reveals Unexpected Mechanisms in Plasmonic Photocatalysis.
    Dall'Osto G; Marsili M; Vanzan M; Toffoli D; Stener M; Corni S; Coccia E
    J Am Chem Soc; 2024 Jan; 146(3):2208-2218. PubMed ID: 38199967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and Interfacial Injection of d-Band Hot Holes Control Plasmonic Chemistry.
    Kiani F; Bowman AR; Sabzehparvar M; Karaman CO; Sundararaman R; Tagliabue G
    ACS Energy Lett; 2023 Oct; 8(10):4242-4250. PubMed ID: 37854045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating Plasmonic Catalysis Kinetics on Hot-Spot Engineered Nanoantennae.
    Nan L; Giráldez-Martínez J; Stefancu A; Zhu L; Liu M; Govorov AO; Besteiro LV; Cortés E
    Nano Lett; 2023 Apr; 23(7):2883-2889. PubMed ID: 37001024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale tracking plasmon-driven photocatalysis in individual nanojunctions by vibrational spectroscopy.
    Zhang K; Liu Y; Zhao J; Liu B
    Nanoscale; 2018 Nov; 10(46):21742-21747. PubMed ID: 30431050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Behaviors of Plasmon-Induced Hot Carriers and Their Applications in Photocatalysis.
    Yang JL; Wang HJ; Qi X; Zheng QN; Tian JH; Zhang H; Li JF
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12149-12160. PubMed ID: 38412551
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.