These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37001112)

  • 1. Connecting Higher-Order Topology with the Orbital Hall Effect in Monolayers of Transition Metal Dichalcogenides.
    Costa M; Focassio B; Canonico LM; Cysne TP; Schleder GR; Muniz RB; Fazzio A; Rappoport TG
    Phys Rev Lett; 2023 Mar; 130(11):116204. PubMed ID: 37001112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disentangling Orbital and Valley Hall Effects in Bilayers of Transition Metal Dichalcogenides.
    Cysne TP; Costa M; Canonico LM; Nardelli MB; Muniz RB; Rappoport TG
    Phys Rev Lett; 2021 Feb; 126(5):056601. PubMed ID: 33605770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe_{2} (X=Mo,W).
    Wang Z; Wieder BJ; Li J; Yan B; Bernevig BA
    Phys Rev Lett; 2019 Nov; 123(18):186401. PubMed ID: 31763917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topology Hierarchy of Transition Metal Dichalcogenides Built from Quantum Spin Hall Layers.
    Xu L; Li Y; Fang Y; Zheng H; Shi W; Chen C; Pei D; Lu D; Hashimoto M; Wang M; Yang L; Feng X; Zhang H; Huang F; Xue Q; He K; Liu Z; Chen Y
    Adv Mater; 2023 May; 35(21):e2300227. PubMed ID: 36870326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergent Quantum Phenomena of a Noncentrosymmetric Charge Density Wave in 1T-Transition Metal Dichalcogenides.
    Ahn CE; Jin KH; Choi YJ; Park JW; Yeom HW; Go A; Kim YB; Cho GY
    Phys Rev Lett; 2024 May; 132(22):226401. PubMed ID: 38877910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological Phase and Quantum Anomalous Hall Effect in Ferromagnetic Transition-Metal Dichalcogenides Monolayer 1T-VSe2.
    Huang A; Chen CH; Chang CH; Jeng HT
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floquet engineering of the orbital Hall effect and valleytronics in two-dimensional topological magnets.
    Li R; Zou X; Chen Z; Feng X; Huang B; Dai Y; Niu C
    Mater Horiz; 2024 Aug; 11(16):3819-3824. PubMed ID: 38805308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological insulating states in 2D transition metal dichalcogenides induced by defects and strain.
    Li X; Zhang S; Wang Q
    Nanoscale; 2017 Jan; 9(2):562-569. PubMed ID: 27957571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local engineering of topological phase in monolayer MoS
    Wang Z; Liu X; Zhu J; You S; Bian K; Zhang G; Feng J; Jiang Y
    Sci Bull (Beijing); 2019 Dec; 64(23):1750-1756. PubMed ID: 36659533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topology-Engineered Orbital Hall Effect in Two-Dimensional Ferromagnets.
    Chen Z; Li R; Bai Y; Mao N; Zeer M; Go D; Dai Y; Huang B; Mokrousov Y; Niu C
    Nano Lett; 2024 Apr; ():. PubMed ID: 38619844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct synthesis of metastable phases of 2D transition metal dichalcogenides.
    Sokolikova MS; Mattevi C
    Chem Soc Rev; 2020 Jun; 49(12):3952-3980. PubMed ID: 32452481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the Quantum Spin Hall Edge States in Two-Dimensional Transition Metal Dichalcogenides.
    Pulkin A; Yazyev OV
    J Phys Chem Lett; 2020 Sep; 11(17):6964-6969. PubMed ID: 32787191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid state theory. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides.
    Qian X; Liu J; Fu L; Li J
    Science; 2014 Dec; 346(6215):1344-7. PubMed ID: 25504715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties.
    Qu Y; Pan H; Kwok CT
    Sci Rep; 2016 Sep; 6():34186. PubMed ID: 27686869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Family of Quantum Spin Hall Insulators in Two-dimensional Transition-Metal Halide with Large Nontrivial Band Gaps.
    Zhou L; Kou L; Sun Y; Felser C; Hu F; Shan G; Smith SC; Yan B; Frauenheim T
    Nano Lett; 2015 Dec; 15(12):7867-72. PubMed ID: 26524118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of topological phase transition in X2-SiGe monolayers.
    Juarez-Mosqueda R; Ma Y; Heine T
    Phys Chem Chem Phys; 2016 Feb; 18(5):3669-74. PubMed ID: 26758453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum anomalous Hall effect in a stable 1T-YN
    Kong X; Li L; Leenaerts O; Wang W; Liu XJ; Peeters FM
    Nanoscale; 2018 May; 10(17):8153-8161. PubMed ID: 29676423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds.
    Padilha JE; Pontes RB; Schmidt TM; Miwa RH; Fazzio A
    Sci Rep; 2016 May; 6():26123. PubMed ID: 27212604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetry-protected hierarchy of anomalous multipole topological band gaps in nonsymmorphic metacrystals.
    Zhang X; Lin ZK; Wang HX; Xiong Z; Tian Y; Lu MH; Chen YF; Jiang JH
    Nat Commun; 2020 Jan; 11(1):65. PubMed ID: 31900420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-induced two-dimensional topological insulators in monolayer 1T'-RuO
    Lu X; Zhou P; Chen S; Sun L
    J Phys Condens Matter; 2022 Oct; 34(47):. PubMed ID: 36174549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.