BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37001198)

  • 1. WHAM-F
    Tipping E; Lofts S; Stockdale A
    Aquat Toxicol; 2023 May; 258():106503. PubMed ID: 37001198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic analysis of freshwater metal toxicity with WHAM-F
    Tipping E; Stockdale A; Lofts S
    Aquat Toxicol; 2019 Jul; 212():128-137. PubMed ID: 31103734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model.
    Tipping E; Lofts S
    Aquat Toxicol; 2013 Oct; 142-143():114-22. PubMed ID: 23994673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb).
    Tipping E; Lofts S
    Environ Toxicol Chem; 2015 Apr; 34(4):788-98. PubMed ID: 25318827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of WHAM-F
    Tipping E; Lofts S; Keller W
    Aquat Toxicol; 2021 Feb; 231():105708. PubMed ID: 33341508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F(tox) approach.
    Qiu H; Vijver MG; He E; Liu Y; Wang P; Xia B; Smolders E; Versieren L; Peijnenburg WJ
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):19213-23. PubMed ID: 26250821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal and proton toxicity to lake zooplankton: a chemical speciation based modelling approach.
    Stockdale A; Tipping E; Lofts S; Fott J; Garmo OA; Hruska J; Keller B; Löfgren S; Maberly SC; Majer V; Nierzwicki-Bauer SA; Persson G; Schartau AK; Thackeray SJ; Valois A; Vrba J; Walseng B; Yan N
    Environ Pollut; 2014 Mar; 186():115-25. PubMed ID: 24370669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delineating the dynamic uptake and toxicity of Ni and Co mixtures in Enchytraeus crypticus using a WHAM-FTOX approach.
    He E; Van Gestel CA
    Chemosphere; 2015 Nov; 139():216-22. PubMed ID: 26134674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability.
    Stockdale A; Tipping E; Lofts S; Ormerod SJ; Clements WH; Blust R
    Aquat Toxicol; 2010 Oct; 100(1):112-9. PubMed ID: 20701986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal mixture modeling evaluation project: 3. Lessons learned and steps forward.
    Farley KJ; Meyer JS
    Environ Toxicol Chem; 2015 Apr; 34(4):821-32. PubMed ID: 25475765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms.
    Iwasaki Y; Cadmus P; Clements WH
    Aquat Toxicol; 2013 May; 132-133():151-6. PubMed ID: 23501491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical load analysis in hazard assessment of metals using a Unit World Model.
    Gandhi N; Bhavsar SP; Diamond ML
    Environ Toxicol Chem; 2011 Sep; 30(9):2157-66. PubMed ID: 21713970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.
    Han S; Naito W; Masunaga S
    Water Sci Technol; 2016; 74(4):896-903. PubMed ID: 27533864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ speciation measurements of trace metals in headwater streams.
    Warnken KW; Lawlor AJ; Lofts S; Tipping E; Davison W; Zhang H
    Environ Sci Technol; 2009 Oct; 43(19):7230-6. PubMed ID: 19848127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating empirically dissolved organic matter quality for WHAM VI using the DOM optical properties: a case study of Cu-Al-DOM interactions.
    Chappaz A; Curtis PJ
    Environ Sci Technol; 2013 Feb; 47(4):2001-7. PubMed ID: 23331061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches.
    Farley KJ; Meyer JS; Balistrieri LS; De Schamphelaere KA; Iwasaki Y; Janssen CR; Kamo M; Lofts S; Mebane CA; Naito W; Ryan AC; Santore RC; Tipping E
    Environ Toxicol Chem; 2015 Apr; 34(4):741-53. PubMed ID: 25418584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of waterborne metals in binary mixtures on short-term gill-metal binding and ion uptake in rainbow trout (Oncorhynchus mykiss).
    Niyogi S; Nadella SR; Wood CM
    Aquat Toxicol; 2015 Aug; 165():109-19. PubMed ID: 26057931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the release of metals from ombrotrophic peat due to drought-induced acidification.
    Tipping E; Smith EJ; Lawlor AJ; Hughes S; Stevens PA
    Environ Pollut; 2003; 123(2):239-53. PubMed ID: 12628203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation of metals in bed sediments and water of Qaraaoun Reservoir, Lebanon.
    Korfali SI; Jurdi MS
    Environ Monit Assess; 2011 Jul; 178(1-4):563-79. PubMed ID: 20865319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity.
    Yim JH; Kim KW; Kim SD
    J Hazard Mater; 2006 Nov; 138(1):16-21. PubMed ID: 16806685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.