These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37001430)

  • 1. Fire accelerant classification from GC-MS data of suspected arson cases using machine-learning models.
    Park C; Lee JB; Park W; Lee DK
    Forensic Sci Int; 2023 May; 346():111646. PubMed ID: 37001430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of gasoline in fire debris using machine learning: Part I, application of random forest, gradient boosting, support vector machine, and naïve bayes.
    Bogdal C; Schellenberg R; Höpli O; Bovens M; Lory M
    Forensic Sci Int; 2022 Feb; 331():111146. PubMed ID: 34968789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research progress on interference in the identification of accelerants in a fire scene].
    Yin G; Qian P; Liqiu F; Jin J; Liu L; Zhang J
    Se Pu; 2022 May; 40(5):401-408. PubMed ID: 35477999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence and thermodynamics help solving arson cases.
    Korver S; Schouten E; Moultos OA; Vergeer P; Grutters MMP; Peschier LJC; Vlugt TJH; Ramdin M
    Sci Rep; 2020 Nov; 10(1):20502. PubMed ID: 33239698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of gasoline in fire debris using machine learning: Part II, application of a neural network.
    Bogdal C; Schellenberg R; Lory M; Bovens M; Höpli O
    Forensic Sci Int; 2022 Mar; 332():111177. PubMed ID: 35065332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Accelerants in Fire Debris - Data Interpretation.
    Bertsch W
    Forensic Sci Rev; 1997 Jun; 9(1):1-22. PubMed ID: 26270863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on species categorical authentication of accelerants based on flame characteristics analysis.
    Zhang Q; Zang Z; Wang P; Zhu L; Cao Y; Jin J; Lu L
    Forensic Sci Int; 2024 Jul; 361():112125. PubMed ID: 39002411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Analysis of accelerant in fire debris by pyrolysis gas chromatography-mass spectrometry].
    Zhang J; Liu J
    Se Pu; 2019 Apr; 37(4):426-431. PubMed ID: 30977346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential dangers of accelerant use in arson.
    Heath K; Kobus H; Byard RW
    J Forensic Leg Med; 2011 Feb; 18(2):49-51. PubMed ID: 21315296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional analysis for identification of arson accelerants by electron ionization Fourier transform ion cyclotron resonance high-resolution mass spectrometry.
    Rodgers RP; Blumer EN; Freitas MA; Marshall AG
    J Forensic Sci; 2001 Mar; 46(2):268-79. PubMed ID: 11305428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.
    Gravett MR; Hopkins FB; Self AJ; Webb AJ; Timperley CM; Riches JR
    Anal Bioanal Chem; 2014 Aug; 406(21):5121-35. PubMed ID: 24972874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of artificial intelligence to detect gasoline in fire debris using HS-SPME-GC/MS and transfer learning.
    Huang TY; Chung Yu JC
    J Forensic Sci; 2024 Jul; 69(4):1222-1234. PubMed ID: 38798027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of kerosene combustion atmosphere on the mild steel oxide layer.
    Xie D; Hong H; Duo S; Li Q
    Sci Rep; 2022 Jan; 12(1):379. PubMed ID: 35013478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemometric classification of casework arson samples based on gasoline content.
    Sinkov NA; Sandercock PM; Harynuk JJ
    Forensic Sci Int; 2014 Feb; 235():24-31. PubMed ID: 24447448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valid internal standard technique for arson detection based on gas chromatography-mass spectrometry.
    Salgueiro PA; Borges CM; Bettencourt da Silva RJ
    J Chromatogr A; 2012 Sep; 1257():189-94. PubMed ID: 22920302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.
    McCurdy RJ; Atwell T; Cole MD
    Forensic Sci Int; 2001 Dec; 123(2-3):191-201. PubMed ID: 11728747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of canines for accelerant detection at fire scenes.
    Kurz ME; Billard M; Rettig M; Augustiniak J; Lange J; Larsen M; Warrick R; Mohns T; Bora R; Broadus K
    J Forensic Sci; 1994 Nov; 39(6):1528-36. PubMed ID: 7815032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review: Recent advancements and moving trends in chemical analysis of fire debris.
    Low Y; Tyrrell E; Gillespie E; Quigley C
    Forensic Sci Int; 2023 Apr; 345():111623. PubMed ID: 36921374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretation of accelerants in blood of cadavers found in the wreckage after fire.
    Iwasaki Y; Yashiki M; Kojima T; Miyazaki T
    Am J Forensic Med Pathol; 1998 Mar; 19(1):80-6. PubMed ID: 9539399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.