BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37001458)

  • 41. Ti
    He Y; Zheng Q; Lin Z
    Mikrochim Acta; 2021 Apr; 188(5):150. PubMed ID: 33813605
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulating defective sites for pharmaceuticals selective removal: Structure-dependent adsorption over continuously tunable pores.
    Cao Y; Li X; Yu G; Wang B
    J Hazard Mater; 2023 Jan; 442():130025. PubMed ID: 36166908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reticular Chemistry for Highly Porous Metal-Organic Frameworks: The Chemistry and Applications.
    Chen Z; Kirlikovali KO; Li P; Farha OK
    Acc Chem Res; 2022 Feb; 55(4):579-591. PubMed ID: 35112832
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Research progress of metal organic frameworks and their derivatives for adsorption of anions in water: A review.
    Huang X; Huang L; Babu Arulmani SR; Yan J; Li Q; Tang J; Wan K; Zhang H; Xiao T; Shao M
    Environ Res; 2022 Mar; 204(Pt D):112381. PubMed ID: 34801541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile preparation of UiO-66@PPy nanostructures for rapid and efficient adsorption of fluoride: Adsorption characteristics and mechanisms.
    Liu D; Li Y; Liu C; Zhou Y
    Chemosphere; 2022 Feb; 289():133164. PubMed ID: 34875289
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adsorption performance and kinetic study of hierarchical porous Fe-based MOFs for toluene removal.
    Ma X; Wang W; Sun C; Li H; Sun J; Liu X
    Sci Total Environ; 2021 Nov; 793():148622. PubMed ID: 34328958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism.
    Ru J; Wang X; Wang F; Cui X; Du X; Lu X
    Ecotoxicol Environ Saf; 2021 Jan; 208():111577. PubMed ID: 33160184
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Defluoridation of groundwater using brick powder as an adsorbent.
    Yadav AK; Kaushik CP; Haritash AK; Kansal A; Rani N
    J Hazard Mater; 2006 Feb; 128(2-3):289-93. PubMed ID: 16233952
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced fluoride removal over MgFe
    Ghanbarian M; Ghanbarian M; Mahvi AH; Tabatabaie T
    Int J Biol Macromol; 2020 Apr; 148():574-590. PubMed ID: 31954792
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The enhanced removal of phosphate by structural defects and competitive fluoride adsorption on cerium-based adsorbent.
    He J; Xu Y; Xiong Z; Lai B; Sun Y; Yang Y; Yang L
    Chemosphere; 2020 Oct; 256():127056. PubMed ID: 32447108
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review.
    Tchinsa A; Hossain MF; Wang T; Zhou Y
    Chemosphere; 2021 Dec; 284():131393. PubMed ID: 34323783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-propelled nanomotors based on hierarchical metal-organic framework composites for the removal of heavy metal ions.
    Yang W; Qiang Y; Du M; Cao Y; Wang Y; Zhang X; Yue T; Huang J; Li Z
    J Hazard Mater; 2022 Aug; 435():128967. PubMed ID: 35483266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of Hierarchical Pores in Metal-Organic Frameworks for Improved Dye Adsorption and Electrocatalytic Performance.
    Lin QY; Ding HJ; Liu M; Liu XY; Nie HX; Fu ZX; Zhang SM; Yu MH; Chang Z
    Inorg Chem; 2022 Apr; 61(15):5800-5812. PubMed ID: 35385648
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly efficient fluoride removal from water using 2D metal-organic frameworks MIL-53(Al) with rich Al and O adsorptive centers.
    Huang L; Yang Z; Alhassan SI; Luo Z; Song B; Jin L; Zhao Y; Wang H
    Environ Sci Ecotechnol; 2021 Oct; 8():100123. PubMed ID: 36156989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robust and Multifunctional 3D Graphene-Based Aerogels Reinforced by Hydroxyapatite Nanowires for Highly Efficient Organic Solvent Adsorption and Fluoride Removal.
    Yan Y; Lu L; Li Y; Han W; Gao A; Zhao S; Cui J; Zhang G
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25385-25396. PubMed ID: 35606335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Data of characterization and adsorption of fluoride from aqueous solution by using modified
    Telkapalliwar NG; Shivankar VM
    Data Brief; 2019 Oct; 26():104509. PubMed ID: 31667272
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation.
    Khan NA; Jhung SH
    J Hazard Mater; 2017 Mar; 325():198-213. PubMed ID: 27936401
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of hydrotalcite and biopolymers entrapped tunable cerium organic cubic hybrid material for superior fluoride adsorption.
    Jeyaseelan A; Viswanathan N; Kumar IA; Naushad M
    Colloids Surf B Biointerfaces; 2023 Apr; 224():113190. PubMed ID: 36764205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review.
    Khan NA; Hasan Z; Jhung SH
    J Hazard Mater; 2013 Jan; 244-245():444-56. PubMed ID: 23195596
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Porous walnut-like La
    Huo JB; Yu G; Xu L; Fu ML
    Chemosphere; 2021 May; 271():129528. PubMed ID: 33434820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.