BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 37001509)

  • 1. Are Deep Neural Networks Adequate Behavioral Models of Human Visual Perception?
    Wichmann FA; Geirhos R
    Annu Rev Vis Sci; 2023 Sep; 9():501-524. PubMed ID: 37001509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Neural Networks and Visuo-Semantic Models Explain Complementary Components of Human Ventral-Stream Representational Dynamics.
    Jozwik KM; Kietzmann TC; Cichy RM; Kriegeskorte N; Mur M
    J Neurosci; 2023 Mar; 43(10):1731-1741. PubMed ID: 36759190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep problems with neural network models of human vision.
    Bowers JS; Malhotra G; Dujmović M; Llera Montero M; Tsvetkov C; Biscione V; Puebla G; Adolfi F; Hummel JE; Heaton RF; Evans BD; Mitchell J; Blything R
    Behav Brain Sci; 2022 Dec; 46():e385. PubMed ID: 36453586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
    Barrett DG; Morcos AS; Macke JH
    Curr Opin Neurobiol; 2019 Apr; 55():55-64. PubMed ID: 30785004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The developmental trajectory of object recognition robustness: Children are like small adults but unlike big deep neural networks.
    Huber LS; Geirhos R; Wichmann FA
    J Vis; 2023 Jul; 23(7):4. PubMed ID: 37410494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.
    Cadieu CF; Hong H; Yamins DL; Pinto N; Ardila D; Solomon EA; Majaj NJ; DiCarlo JJ
    PLoS Comput Biol; 2014 Dec; 10(12):e1003963. PubMed ID: 25521294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images.
    Jang H; McCormack D; Tong F
    PLoS Biol; 2021 Dec; 19(12):e3001418. PubMed ID: 34882676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergences in color perception between deep neural networks and humans.
    Nadler EO; Darragh-Ford E; Desikan BS; Conaway C; Chu M; Hull T; Guilbeault D
    Cognition; 2023 Dec; 241():105621. PubMed ID: 37716312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative biology approach to DNN modeling of vision: A focus on differences, not similarities.
    Lonnqvist B; Bornet A; Doerig A; Herzog MH
    J Vis; 2021 Sep; 21(10):17. PubMed ID: 34551062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symbolic Deep Networks: A Psychologically Inspired Lightweight and Efficient Approach to Deep Learning.
    Veksler VD; Hoffman BE; Buchler N
    Top Cogn Sci; 2022 Oct; 14(4):702-717. PubMed ID: 34609080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering image contrast in object classification deep networks.
    Akbarinia A; Gil-Rodríguez R
    Vision Res; 2020 Aug; 173():61-76. PubMed ID: 32480109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Human Object Vision: A Picture Is Worth a Thousand Representations.
    Bracci S; Op de Beeck HP
    Annu Rev Psychol; 2023 Jan; 74():113-135. PubMed ID: 36378917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harmonizing the object recognition strategies of deep neural networks with humans.
    Fel T; Felipe I; Linsley D; Serre T
    Adv Neural Inf Process Syst; 2022 Dec; 35():9432-9446. PubMed ID: 37465369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognizing Object by Components With Human Prior Knowledge Enhances Adversarial Robustness of Deep Neural Networks.
    Li X; Wang Z; Zhang B; Sun F; Hu X
    IEEE Trans Pattern Anal Mach Intell; 2023 Jul; 45(7):8861-8873. PubMed ID: 37021866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-like illusion produced by Skye's Oblique Grating in deep neural networks.
    Zhang H; Yoshida S; Li Z
    PLoS One; 2024; 19(2):e0299083. PubMed ID: 38394261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Neural Networks as a Computational Model for Human Shape Sensitivity.
    Kubilius J; Bracci S; Op de Beeck HP
    PLoS Comput Biol; 2016 Apr; 12(4):e1004896. PubMed ID: 27124699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Psychophysics may be the game-changer for deep neural networks (DNNs) to imitate the human vision.
    Chandran KS; Paul AM; Paul A; Ghosh K
    Behav Brain Sci; 2023 Dec; 46():e388. PubMed ID: 38054301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Which deep learning model can best explain object representations of within-category exemplars?
    Lee D
    J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.