BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 37001509)

  • 21. ROOD-MRI: Benchmarking the robustness of deep learning segmentation models to out-of-distribution and corrupted data in MRI.
    Boone L; Biparva M; Mojiri Forooshani P; Ramirez J; Masellis M; Bartha R; Symons S; Strother S; Black SE; Heyn C; Martel AL; Swartz RH; Goubran M
    Neuroimage; 2023 Sep; 278():120289. PubMed ID: 37495197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multimodal deep neural decoding reveals highly resolved spatiotemporal profile of visual object representation in humans.
    Watanabe N; Miyoshi K; Jimura K; Shimane D; Keerativittayayut R; Nakahara K; Takeda M
    Neuroimage; 2023 Jul; 275():120164. PubMed ID: 37169115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Learning: The Good, the Bad, and the Ugly.
    Serre T
    Annu Rev Vis Sci; 2019 Sep; 5():399-426. PubMed ID: 31394043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fixing the problems of deep neural networks will require better training data and learning algorithms.
    Linsley D; Serre T
    Behav Brain Sci; 2023 Dec; 46():e400. PubMed ID: 38054333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications.
    Pastur-Romay LA; Cedrón F; Pazos A; Porto-Pazos AB
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27529225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compressing Deep Networks by Neuron Agglomerative Clustering.
    Wang LN; Liu W; Liu X; Zhong G; Roy PP; Dong J; Huang K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of deep neural network features by decodability from human brain activity.
    Horikawa T; Aoki SC; Tsukamoto M; Kamitani Y
    Sci Data; 2019 Feb; 6():190012. PubMed ID: 30747910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transformed ℓ
    Ma R; Miao J; Niu L; Zhang P
    Neural Netw; 2019 Nov; 119():286-298. PubMed ID: 31499353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. There is a fundamental, unbridgeable gap between DNNs and the visual cortex.
    Gur M
    Behav Brain Sci; 2023 Dec; 46():e393. PubMed ID: 38054293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Causal importance of low-level feature selectivity for generalization in image recognition.
    Ukita J
    Neural Netw; 2020 May; 125():185-193. PubMed ID: 32145648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep Learning for Computer Vision: A Brief Review.
    Voulodimos A; Doulamis N; Doulamis A; Protopapadakis E
    Comput Intell Neurosci; 2018; 2018():7068349. PubMed ID: 29487619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling human vision needs to account for subjective experience.
    Koculak M; Wierzchoń M
    Behav Brain Sci; 2023 Dec; 46():e397. PubMed ID: 38054283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep supervised learning with mixture of neural networks.
    Hu Y; Luo S; Han L; Pan L; Zhang T
    Artif Intell Med; 2020 Jan; 102():101764. PubMed ID: 31980101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perceptual Dominance in Brief Presentations of Mixed Images: Human Perception vs. Deep Neural Networks.
    Gruber LZ; Haruvi A; Basri R; Irani M
    Front Comput Neurosci; 2018; 12():57. PubMed ID: 30087604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From convolutional neural networks to models of higher-level cognition (and back again).
    Battleday RM; Peterson JC; Griffiths TL
    Ann N Y Acad Sci; 2021 Dec; 1505(1):55-78. PubMed ID: 33754368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in Large Margin Learning.
    Guo Y; Zhang C
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7167-7174. PubMed ID: 34161238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A large and rich EEG dataset for modeling human visual object recognition.
    Gifford AT; Dwivedi K; Roig G; Cichy RM
    Neuroimage; 2022 Dec; 264():119754. PubMed ID: 36400378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perception without preconception: comparison between the human and machine learner in recognition of tissues from histological sections.
    Barui S; Sanyal P; Rajmohan KS; Malik A; Dudani S
    Sci Rep; 2022 Sep; 12(1):16420. PubMed ID: 36180472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A brain-inspired network architecture for cost-efficient object recognition in shallow hierarchical neural networks.
    Park Y; Baek S; Paik SB
    Neural Netw; 2021 Feb; 134():76-85. PubMed ID: 33291018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.