BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37001509)

  • 41. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Performance of biologically grounded models of the early visual system on standard object recognition tasks.
    Teichmann M; Larisch R; Hamker FH
    Neural Netw; 2021 Dec; 144():210-228. PubMed ID: 34507042
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visual perception of liquids: Insights from deep neural networks.
    van Assen JJR; Nishida S; Fleming RW
    PLoS Comput Biol; 2020 Aug; 16(8):e1008018. PubMed ID: 32813688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Atoms of recognition in human and computer vision.
    Ullman S; Assif L; Fetaya E; Harari D
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2744-9. PubMed ID: 26884200
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An ecologically motivated image dataset for deep learning yields better models of human vision.
    Mehrer J; Spoerer CJ; Jones EC; Kriegeskorte N; Kietzmann TC
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593900
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Implementing artificial neural networks through bionic construction.
    He H; Yang X; Xu Z; Deng N; Shang Y; Liu G; Ji M; Zheng W; Zhao J; Dong L
    PLoS One; 2019; 14(2):e0212368. PubMed ID: 30794587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. For human-like models, train on human-like tasks.
    Hermann K; Nayebi A; van Steenkiste S; Jones M
    Behav Brain Sci; 2023 Dec; 46():e394. PubMed ID: 38054325
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep learning-Using machine learning to study biological vision.
    Majaj NJ; Pelli DG
    J Vis; 2018 Dec; 18(13):2. PubMed ID: 30508427
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using a model of human visual perception to improve deep learning.
    Stettler M; Francis G
    Neural Netw; 2018 Aug; 104():40-49. PubMed ID: 29705669
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future.
    Lindsay GW
    J Cogn Neurosci; 2021 Sep; 33(10):2017-2031. PubMed ID: 32027584
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhancing neural encoding models for naturalistic perception with a multi-level integration of deep neural networks and cortical networks.
    Li Y; Yang H; Gu S
    Sci Bull (Beijing); 2024 Jun; 69(11):1738-1747. PubMed ID: 38490889
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling Biological Face Recognition with Deep Convolutional Neural Networks.
    van Dyck LE; Gruber WR
    J Cogn Neurosci; 2023 Oct; 35(10):1521-1537. PubMed ID: 37584587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Can machine learning account for human visual object shape similarity judgments?
    German JS; Jacobs RA
    Vision Res; 2020 Feb; 167():87-99. PubMed ID: 31972448
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex.
    Jia X; Hong H; DiCarlo JJ
    Elife; 2021 Jun; 10():. PubMed ID: 34114566
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biological convolutions improve DNN robustness to noise and generalisation.
    Evans BD; Malhotra G; Bowers JS
    Neural Netw; 2022 Apr; 148():96-110. PubMed ID: 35114495
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Qualitative similarities and differences in visual object representations between brains and deep networks.
    Jacob G; Pramod RT; Katti H; Arun SP
    Nat Commun; 2021 Mar; 12(1):1872. PubMed ID: 33767141
    [TBL] [Abstract][Full Text] [Related]  

  • 58. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robust decoding of the speech envelope from EEG recordings through deep neural networks.
    Thornton M; Mandic D; Reichenbach T
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35709698
    [No Abstract]   [Full Text] [Related]  

  • 60. A deep neural network model for multi-view human activity recognition.
    Putra PU; Shima K; Shimatani K
    PLoS One; 2022; 17(1):e0262181. PubMed ID: 34995315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.