These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 37001511)

  • 1. EEG-based classification of imagined digits using a recurrent neural network.
    Mahapatra NC; Bhuyan P
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 37001511
    [No Abstract]   [Full Text] [Related]  

  • 2. Recognition of EEG Signals from Imagined Vowels Using Deep Learning Methods.
    Sarmiento LC; Villamizar S; López O; Collazos AC; Sarmiento J; Rodríguez JB
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiclass Classification of Visual Electroencephalogram Based on Channel Selection, Minimum Norm Estimation Algorithm, and Deep Network Architectures.
    Mwata-Velu T; Zamora E; Vasquez-Gomez JI; Ruiz-Pinales J; Sossa H
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imagined speech classification exploiting EEG power spectrum features.
    Hossain A; Khan P; Kader MF
    Med Biol Eng Comput; 2024 Aug; 62(8):2529-2544. PubMed ID: 38632207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on two-class and four-class action recognition based on EEG signals.
    Chang Y; Wang L; Zhao Y; Liu M; Zhang J
    Math Biosci Eng; 2023 Apr; 20(6):10376-10391. PubMed ID: 37322937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the Effectiveness of the Brain-Computer Interface for Task Discerning Based on Machine Learning.
    Browarczyk J; Kurowski A; Kostek B
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32340276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal-spatial cross attention network for recognizing imagined characters.
    Xu M; Zhou W; Shen X; Qiu J; Li D
    Sci Rep; 2024 Jul; 14(1):15432. PubMed ID: 38965248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Explainable and Generalizable Recurrent Neural Network Approach for Differentiating Human Brain States on EEG Dataset.
    Zhang S; Wu L; Yu S; Shi E; Qiang N; Gao H; Zhao J; Zhao S
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7339-7350. PubMed ID: 36331650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-based image classification via a region-level stacked bi-directional deep learning framework.
    Fares A; Zhong SH; Jiang J
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 6):268. PubMed ID: 31856818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Learning Model for Correlation Analysis between Electroencephalography Signal and Speech Stimuli.
    Alessandrini M; Falaschetti L; Biagetti G; Crippa P; Luzzi S; Turchetti C
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CNN-Based Image Analysis for EEG Signal Characterization.
    Li Y
    Stud Health Technol Inform; 2023 Nov; 308():20-30. PubMed ID: 38007721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel model based on a 1D-ResCNN and transfer learning for processing EEG attenuation.
    Wang W; Li B
    Comput Methods Biomech Biomed Engin; 2023; 26(16):1980-1993. PubMed ID: 36591913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain-Specific Processing Stage for Estimating Single-Trail Evoked Potential Improves CNN Performance in Detecting Error Potential.
    Farabbi A; Mainardi L
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imagined speech can be decoded from low- and cross-frequency intracranial EEG features.
    Proix T; Delgado Saa J; Christen A; Martin S; Pasley BN; Knight RT; Tian X; Poeppel D; Doyle WK; Devinsky O; Arnal LH; Mégevand P; Giraud AL
    Nat Commun; 2022 Jan; 13(1):48. PubMed ID: 35013268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless Mouth Motion Recognition System Based on EEG-EMG Sensors for Severe Speech Impairments.
    Moon KS; Kang JS; Lee SQ; Thompson J; Satterlee N
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech decoding from stereo-electroencephalography (sEEG) signals using advanced deep learning methods.
    Wu X; Wellington S; Fu Z; Zhang D
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38885688
    [No Abstract]   [Full Text] [Related]  

  • 17. Decoding Imagined and Spoken Phrases From Non-invasive Neural (MEG) Signals.
    Dash D; Ferrari P; Wang J
    Front Neurosci; 2020; 14():290. PubMed ID: 32317917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A State-of-the-Art Review of EEG-Based Imagined Speech Decoding.
    Lopez-Bernal D; Balderas D; Ponce P; Molina A
    Front Hum Neurosci; 2022; 16():867281. PubMed ID: 35558735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroencephalography Based Fusion Two-Dimensional (2D)-Convolution Neural Networks (CNN) Model for Emotion Recognition System.
    Kwon YH; Shin SB; Kim SD
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29710869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible In-Ga-Zn-N-O synaptic transistors for ultralow-power neuromorphic computing and EEG-based brain-computer interfaces.
    Fan S; Wu E; Cao M; Xu T; Liu T; Yang L; Su J; Liu J
    Mater Horiz; 2023 Oct; 10(10):4317-4328. PubMed ID: 37431592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.