These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37001513)

  • 1. Recalibration of neuromodulation parameters in neural implants with adaptive Bayesian optimization.
    Aiello G; Valle G; Raspopovic S
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 37001513
    [No Abstract]   [Full Text] [Related]  

  • 2. Automated calibration of somatosensory stimulation using reinforcement learning.
    Borda L; Gozzi N; Preatoni G; Valle G; Raspopovic S
    J Neuroeng Rehabil; 2023 Sep; 20(1):131. PubMed ID: 37752607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys.
    Bonizzato M; Guay Hottin R; Côté SL; Massai E; Choinière L; Macar U; Laferrière S; Sirpal P; Quessy S; Lajoie G; Martinez M; Dancause N
    Cell Rep Med; 2023 Apr; 4(4):101008. PubMed ID: 37044093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing neuromodulation based on surrogate neural states for seizure suppression in a rat temporal lobe epilepsy model.
    Park SE; Connolly MJ; Exarchos I; Fernandez A; Ghetiya M; Gutekunst CA; Gross RE
    J Neural Eng; 2020 Jul; 17(4):046009. PubMed ID: 32492658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized inference for neurostimulation with meta-learning: a case study of vagus nerve stimulation.
    Mao X; Chang YC; Zanos S; Lajoie G
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38131193
    [No Abstract]   [Full Text] [Related]  

  • 6. Online Bayesian optimization of vagus nerve stimulation.
    Wernisch L; Edwards T; Berthon A; Tessier-Lariviere O; Sarkans E; Stoukidi M; Fortier-Poisson P; Pinkney M; Thornton M; Hanley C; Lee S; Jennings J; Appleton B; Garsed P; Patterson B; Buttinger W; Gonshaw S; Jakopec M; Shunmugam S; Mamen J; Tukiainen A; Lajoie G; Armitage O; Hewage E
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38479016
    [No Abstract]   [Full Text] [Related]  

  • 7. Optimization of closed-loop electrical stimulation enables robust cerebellar-directed seizure control.
    Stieve BJ; Richner TJ; Krook-Magnuson C; Netoff TI; Krook-Magnuson E
    Brain; 2023 Jan; 146(1):91-108. PubMed ID: 35136942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaussian-process-based Bayesian optimization for neurostimulation interventions in rats.
    Choinière L; Guay-Hottin R; Picard R; Lajoie G; Bonizzato M; Dancause N
    STAR Protoc; 2024 Mar; 5(1):102885. PubMed ID: 38358881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fully implantable wireless bidirectional neuromodulation system for mice.
    Wright JP; Mughrabi IT; Wong J; Mathew J; Jayaprakash N; Crosfield C; Chang EH; Chavan SS; Tracey KJ; Pavlov VA; Al-Abed Y; Zanos TP; Zanos S; Datta-Chaudhuri T
    Biosens Bioelectron; 2022 Mar; 200():113886. PubMed ID: 34995836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive multichannel FES neuroprosthesis with learning control and automatic gait assessment.
    Müller P; Del Ama AJ; Moreno JC; Schauer T
    J Neuroeng Rehabil; 2020 Feb; 17(1):36. PubMed ID: 32111245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral neurostimulation for encoding artificial somatosensations.
    Valle G
    Eur J Neurosci; 2022 Nov; 56(10):5888-5901. PubMed ID: 36097134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The future of neuromodulation: smart neuromodulation.
    De Ridder D; Maciaczyk J; Vanneste S
    Expert Rev Med Devices; 2021 Apr; 18(4):307-317. PubMed ID: 33764840
    [No Abstract]   [Full Text] [Related]  

  • 13. An introduction to operative neuromodulation and functional neuroprosthetics, the new frontiers of clinical neuroscience and biotechnology.
    Sakas DE; Panourias IG; Simpson BA; Krames ES
    Acta Neurochir Suppl; 2007; 97(Pt 1):3-10. PubMed ID: 17691351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian optimization of peripheral intraneural stimulation protocols to evoke distal limb movements.
    Losanno E; Badi M; Wurth S; Borgognon S; Courtine G; Capogrosso M; Rouiller EM; Micera S
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34874320
    [No Abstract]   [Full Text] [Related]  

  • 15. From dawn till dusk: Time-adaptive bayesian optimization for neurostimulation.
    Fleming JE; Pont Sanchis I; Lemmens O; Denison-Smith A; West TO; Denison T; Cagnan H
    PLoS Comput Biol; 2023 Dec; 19(12):e1011674. PubMed ID: 38091368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Bayesian automatic calibration of a functional-structural wheat model using an adaptive design and a metamodelling approach.
    Blanc E; Enjalbert J; Flutre T; Barbillon P
    J Exp Bot; 2023 Nov; 74(21):6722-6734. PubMed ID: 37632355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Bayesian Optimization of Spatiotemporal Neurostimulations for Targeted Motor Outputs.
    Laferriere S; Bonizzato M; Cote SL; Dancause N; Lajoie G
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1452-1460. PubMed ID: 32286996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural co-processors for restoring brain function: results from a cortical model of grasping.
    Bryan MJ; Preston Jiang L; P N Rao R
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37019099
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.