These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37001842)

  • 81. Vagus nerve stimulation paired with rehabilitation for stroke: Implantation experience from the VNS-REHAB trial.
    Liu CY; Russin J; Adelson DP; Jenkins A; Hilmi O; Brown B; Lega B; Whitworth T; Bhattacharyya D; Schwartz TH; Krishna V; Williams Z; Uff C; Willie J; Hoffman C; Vandergrift WA; Achrol AS; Ali R; Konrad P; Edmonds J; Kim D; Bhatt P; Tarver BW; Pierce D; Jain R; Burress C; Casavant R; Prudente CN; Engineer ND
    J Clin Neurosci; 2022 Nov; 105():122-128. PubMed ID: 36182812
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Do somatosensory deficits predict efficacy of neurorehabilitation using neuromuscular electrical stimulation for moderate to severe motor paralysis of the upper limb in chronic stroke?
    Tsuzuki K; Kawakami M; Nakamura T; Oshima O; Hijikata N; Suda M; Yamada Y; Okuyama K; Tsuji T
    Ther Adv Neurol Disord; 2021; 14():17562864211039335. PubMed ID: 34471424
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Resting-state functional connectivity for determining outcomes in upper extremity function after stroke: A functional near-infrared spectroscopy study.
    Sui Y; Kan C; Zhu S; Zhang T; Wang J; Xu S; Zhuang R; Shen Y; Wang T; Guo C
    Front Neurol; 2022; 13():965856. PubMed ID: 36438935
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Additional therapy promotes a continued pattern of improvement in upper-limb function and independence post-stroke.
    Thompson-Butel AG; Ashcroft SK; Lin G; Trinh T; McNulty PA
    J Stroke Cerebrovasc Dis; 2023 Apr; 32(4):106995. PubMed ID: 36681009
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment.
    Lee SH; Park G; Cho DY; Kim HY; Lee JY; Kim S; Park SB; Shin JH
    Sci Rep; 2020 Feb; 10(1):1806. PubMed ID: 32019981
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effect of intensive motor training with repetitive transcranial magnetic stimulation on upper limb motor function in chronic post-stroke patients with severe upper limb motor impairment.
    Hirakawa Y; Takeda K; Tanabe S; Koyama S; Motoya I; Sakurai H; Kanada Y; Kawamura N; Kawamura M; Nagata J; Kanno T
    Top Stroke Rehabil; 2018 Jul; 25(5):321-325. PubMed ID: 29718776
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Unilateral vs Bilateral Hybrid Approaches for Upper Limb Rehabilitation in Chronic Stroke: A Randomized Controlled Trial.
    Hung CS; Lin KC; Chang WY; Huang WC; Chang YJ; Chen CL; Grace Yao K; Lee YY
    Arch Phys Med Rehabil; 2019 Dec; 100(12):2225-2232. PubMed ID: 31421096
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Frequency-tuned electromagnetic field therapy improves post-stroke motor function: A pilot randomized controlled trial.
    Weisinger B; Pandey DP; Saver JL; Hochberg A; Bitton A; Doniger GM; Lifshitz A; Vardi O; Shohami E; Segal Y; Reznik Balter S; Djemal Kay Y; Alter A; Prasad A; Bornstein NM
    Front Neurol; 2022; 13():1004677. PubMed ID: 36452175
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Three Ways to Improve Arm Function in the Chronic Phase After Stroke by Robotic Priming Combined With Mirror Therapy, Arm Training, and Movement-Oriented Therapy.
    Li YC; Lin KC; Chen CL; Yao G; Ya-Ju Chang ; Lee YY; Liu CT; Chen WS
    Arch Phys Med Rehabil; 2023 Aug; 104(8):1195-1202. PubMed ID: 36933609
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Efficacy and Safety of Vagus Nerve Stimulation on Upper Limb Motor Recovery After Stroke. A Systematic Review and Meta-Analysis.
    Ramos-Castaneda JA; Barreto-Cortes CF; Losada-Floriano D; Sanabria-Barrera SM; Silva-Sieger FA; Garcia RG
    Front Neurol; 2022; 13():889953. PubMed ID: 35847207
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Neurocognitive robot-assisted rehabilitation of hand function: a randomized control trial on motor recovery in subacute stroke.
    Ranzani R; Lambercy O; Metzger JC; Califfi A; Regazzi S; Dinacci D; Petrillo C; Rossi P; Conti FM; Gassert R
    J Neuroeng Rehabil; 2020 Aug; 17(1):115. PubMed ID: 32831097
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effect of Robot-assisted Rehabilitation to Botulinum Toxin A Injection for Upper Limb Disability in Patients with Chronic Stroke: A Case Series and Systematic Review.
    Hyakutake K; Morishita T; Saita K; Fukuda H; Abe H; Ogata T; Kamada S; Inoue T
    Neurol Med Chir (Tokyo); 2022 Jan; 62(1):35-44. PubMed ID: 34732591
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The Predictive Role of Hand Section of Fugl-Meyer Assessment and Motor Activity Log in Action Research Arm Test in People With Stroke.
    Chen P; Liu TW; Tse MMY; Lai CKY; Tsoh J; Ng SSM
    Front Neurol; 2022; 13():926130. PubMed ID: 35873769
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Development of a 13-item Short Form for Fugl-Meyer Assessment of Upper Extremity Scale Using a Machine Learning Approach.
    Lin GH; Wang I; Lee SC; Huang CY; Wang YC; Hsieh CL
    Arch Phys Med Rehabil; 2023 Aug; 104(8):1219-1226. PubMed ID: 36736809
    [TBL] [Abstract][Full Text] [Related]  

  • 95. BoTULS: a multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A.
    Shaw L; Rodgers H; Price C; van Wijck F; Shackley P; Steen N; Barnes M; Ford G; Graham L;
    Health Technol Assess; 2010 May; 14(26):1-113, iii-iv. PubMed ID: 20515600
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Kinematic upper extremity performance in people with near or fully recovered sensorimotor function after stroke.
    Thrane G; Sunnerhagen KS; Persson HC; Opheim A; Alt Murphy M
    Physiother Theory Pract; 2019 Sep; 35(9):822-832. PubMed ID: 29658813
    [No Abstract]   [Full Text] [Related]  

  • 97. Proprioceptive Training with Visual Feedback Improves Upper Limb Function in Stroke Patients: A Pilot Study.
    He J; Li C; Lin J; Shu B; Ye B; Wang J; Lin Y; Jia J
    Neural Plast; 2022; 2022():1588090. PubMed ID: 35075359
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Home-based constraint-induced movement therapy for patients with upper limb dysfunction after stroke (HOMECIMT): a cluster-randomised, controlled trial.
    Barzel A; Ketels G; Stark A; Tetzlaff B; Daubmann A; Wegscheider K; van den Bussche H; Scherer M
    Lancet Neurol; 2015 Sep; 14(9):893-902. PubMed ID: 26231624
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effects of combining two techniques of non-invasive brain stimulation in subacute stroke patients: a pilot study.
    Pipatsrisawat S; Klaphajone J; Kitisak K; Sungkarat S; Wivatvongvana P
    BMC Neurol; 2022 Mar; 22(1):98. PubMed ID: 35300622
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A community-based upper-extremity group exercise program improves motor function and performance of functional activities in chronic stroke: a randomized controlled trial.
    Pang MY; Harris JE; Eng JJ
    Arch Phys Med Rehabil; 2006 Jan; 87(1):1-9. PubMed ID: 16401430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.