These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 37001856)

  • 21. Incorporation of evolutionary information into Rosetta comparative modeling.
    Thompson J; Baker D
    Proteins; 2011 Aug; 79(8):2380-8. PubMed ID: 21638331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of the reported performance of ab initio protein structure prediction algorithms.
    Helles G
    J R Soc Interface; 2008 Apr; 5(21):387-96. PubMed ID: 18077243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Principles, challenges and advances in ab initio protein structure prediction.
    Jothi A
    Protein Pept Lett; 2012 Nov; 19(11):1194-204. PubMed ID: 22587787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure prediction.
    Görmez Y; Sabzekar M; Aydın Z
    Proteins; 2021 Oct; 89(10):1277-1288. PubMed ID: 33993559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy.
    Ogorzalek TL; Hura GL; Belsom A; Burnett KH; Kryshtafovych A; Tainer JA; Rappsilber J; Tsutakawa SE; Fidelis K
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):202-214. PubMed ID: 29314274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein loop structure prediction by community-based deep learning and its application to antibody CDR H3 loop modeling.
    Woo H; Kim Y; Seok C
    PLoS Comput Biol; 2024 Jun; 20(6):e1012239. PubMed ID: 38913733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate prediction of protein folding mechanisms by simple structure-based statistical mechanical models.
    Ooka K; Arai M
    Nat Commun; 2023 Oct; 14(1):6338. PubMed ID: 37857633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Comparative Study on Single and Multiple Point Crossovers in a Genetic Algorithm for Coarse Protein Modeling.
    Dubey SPN; Kini NG; Balaji S; Kumar MS
    Crit Rev Biomed Eng; 2018; 46(2):163-171. PubMed ID: 30055532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing Predicted Contacts for Building Protein Three-Dimensional Models.
    Adhikari B; Bhattacharya D; Cao R; Cheng J
    Methods Mol Biol; 2017; 1484():115-126. PubMed ID: 27787823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of distance-based protein structure prediction by deep learning in CASP13.
    Xu J; Wang S
    Proteins; 2019 Dec; 87(12):1069-1081. PubMed ID: 31471916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DEMO2: Assemble multi-domain protein structures by coupling analogous template alignments with deep-learning inter-domain restraint prediction.
    Zhou X; Peng C; Zheng W; Li Y; Zhang G; Zhang Y
    Nucleic Acids Res; 2022 Jul; 50(W1):W235-W245. PubMed ID: 35536281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An introduction to protein contact prediction.
    Hamilton N; Huber T
    Methods Mol Biol; 2008; 453():87-104. PubMed ID: 18712298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep learning techniques have significantly impacted protein structure prediction and protein design.
    Pearce R; Zhang Y
    Curr Opin Struct Biol; 2021 Jun; 68():194-207. PubMed ID: 33639355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flattening the curve-How to get better results with small deep-mutational-scanning datasets.
    Wirnsberger G; Pritišanac I; Oberdorfer G; Gruber K
    Proteins; 2024 Jul; 92(7):886-902. PubMed ID: 38501649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction.
    Faraggi E; Yang Y; Zhang S; Zhou Y
    Structure; 2009 Nov; 17(11):1515-27. PubMed ID: 19913486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein structure prediction: challenging targets for CASP10.
    Runthala A
    J Biomol Struct Dyn; 2012; 30(5):607-15. PubMed ID: 22731875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The whole is greater than its parts: ensembling improves protein contact prediction.
    Billings WM; Morris CJ; Della Corte D
    Sci Rep; 2021 Apr; 11(1):8039. PubMed ID: 33850214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finding the needle in the haystack: towards solving the protein-folding problem computationally.
    Li B; Fooksa M; Heinze S; Meiler J
    Crit Rev Biochem Mol Biol; 2018 Feb; 53(1):1-28. PubMed ID: 28976219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving protein fold recognition using triplet network and ensemble deep learning.
    Liu Y; Han K; Zhu YH; Zhang Y; Shen LC; Song J; Yu DJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.