These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37002070)

  • 1. Acoustic shock waves emitted from two interacting laser generated plasmas in air.
    Elle M; Guthikonda N; Shiva SS; Kiran PP
    J Acoust Soc Am; 2023 Mar; 153(3):1655. PubMed ID: 37002070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of laser intensity on temporal and spectral features of laser generated acoustic shock waves: ns versus ps laser pulses.
    Manikanta E; Vinoth Kumar L; Leela C; Prem Kiran P
    Appl Opt; 2017 Aug; 56(24):6902-6910. PubMed ID: 29048033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pulse duration on the acoustic frequency emissions during the laser-induced breakdown of atmospheric air.
    Manikanta E; Vinoth Kumar L; Venkateshwarlu P; Leela Ch; Kiran PP
    Appl Opt; 2016 Jan; 55(3):548-55. PubMed ID: 26835930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Structure and dynamics of photo-acoustic shock-waves in 193 nm excimer laser photo-ablation of the cornea].
    Kermani O; Lubatschowski H
    Fortschr Ophthalmol; 1991; 88(6):748-53. PubMed ID: 1794797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of standing acoustic waves on the formation of laser-induced air plasmas.
    Craig SM; Brownell K; O'Leary B; Malfitano C; Kelley JA
    Appl Spectrosc; 2013 Mar; 67(3):329-34. PubMed ID: 23452498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses.
    Vogel A; Busch S; Jungnickel K; Birngruber R
    Lasers Surg Med; 1994; 15(1):32-43. PubMed ID: 7997046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-shot spatially resolved characterization of laser-induced shock waves in water.
    Noack J; Vogel A
    Appl Opt; 1998 Jul; 37(19):4092-9. PubMed ID: 18285846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-critical phase explosion promoting breakdown plasma ignition during laser ablation of graphite.
    Ionin AA; Kudryashov SI; Seleznev LV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016404. PubMed ID: 20866744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracochlear pressure measurements during acoustic shock wave exposure.
    Greene NT; Alhussaini MA; Easter JR; Argo TF; Walilko T; Tollin DJ
    Hear Res; 2018 Aug; 365():149-164. PubMed ID: 29843947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of laser-induced shock waves generated during infrared laser ablation of copper by the optical beam deflection method.
    Rehman ZU; Raza A; Qayyum H; Ullah S; Mahmood S; Qayyum A
    Appl Opt; 2022 Oct; 61(29):8606-8612. PubMed ID: 36255992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and analytical evaluation of the acoustic radiation of femtosecond laser plasma filament sound sources in air.
    Kaleris K; Orfanos Y; Bakarezos M; Papadogiannis N; Mourjopoulos J
    J Acoust Soc Am; 2019 Sep; 146(3):EL212. PubMed ID: 31590509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focusing of shock waves induced by optical breakdown in water.
    Sankin GN; Zhou Y; Zhong P
    J Acoust Soc Am; 2008 Jun; 123(6):4071-81. PubMed ID: 18537359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble.
    Huang G; Zhang M; Han L; Ma X; Huang B
    Ultrason Sonochem; 2021 Apr; 72():105440. PubMed ID: 33421930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives of coronary excimer laser angioplasty: multiplexing, saline flushing, and acoustic ablation control.
    Haase KK; Rose C; Duda S; Baumbach A; Oberhoff M; Anthanasiadis A; Karsch KR
    Lasers Surg Med; 1997; 21(1):72-8. PubMed ID: 9228643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of the air plasma expansion dynamics by fluorescence method].
    Wang JX; Gao X; Li Q; Zheng YN; Lin JQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2472-5. PubMed ID: 25532347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of point- and line-source laser-generated acoustic wave to surface flaws.
    Kenderian S; Djordjevic BB; Green RE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Aug; 50(8):1057-64. PubMed ID: 12952096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occluded insertion loss from intracochlear pressure measurements during acoustic shock wave exposure.
    Anderson DA; Argo TF; Greene NT
    Hear Res; 2023 Feb; 428():108669. PubMed ID: 36565603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.
    Fuh E; Haleblian GE; Norris RD; Albala WD; Simmons N; Zhong P; Preminger GM
    J Urol; 2007 Apr; 177(4):1542-5. PubMed ID: 17382775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel range-verification method using ionoacoustic wave generated from spherical gold markers for particle-beam therapy: a simulation study.
    Takayanagi T; Uesaka T; Kitaoka M; Unlu MB; Umegaki K; Shirato H; Xing L; Matsuura T
    Sci Rep; 2019 Mar; 9(1):4011. PubMed ID: 30850625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonographic probing of laser filaments in air.
    Yu J; Mondelain D; Kasparian J; Salmon E; Geffroy S; Favre C; Boutou V; Wolf JP
    Appl Opt; 2003 Dec; 42(36):7117-20. PubMed ID: 14717285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.