These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37002087)
1. Weak-form homogenization of two and three-dimensional fluid acoustical systems. Muhlestein MB J Acoust Soc Am; 2023 Mar; 153(3):1694. PubMed ID: 37002087 [TBL] [Abstract][Full Text] [Related]
2. Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization. Patil GU; Matlack KH J Acoust Soc Am; 2019 Mar; 145(3):1259. PubMed ID: 31067925 [TBL] [Abstract][Full Text] [Related]
3. Effective acoustic metamaterial homogenization based on Hamilton's principle with a multiple scales approximation. Muhlestein MB J Acoust Soc Am; 2020 May; 147(5):3584. PubMed ID: 32486826 [TBL] [Abstract][Full Text] [Related]
4. Random Stiffness Tensor of Particulate Composites with Hyper-Elastic Matrix and Imperfect Interface. Sokołowski D; Kamiński M Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772202 [TBL] [Abstract][Full Text] [Related]
5. High-frequency homogenization in periodic media with imperfect interfaces. Assier RC; Touboul M; Lombard B; Bellis C Proc Math Phys Eng Sci; 2020 Dec; 476(2244):20200402. PubMed ID: 33402874 [TBL] [Abstract][Full Text] [Related]
6. On the use of the method of wave images to introduce students to acoustics. Ginsberg JH J Acoust Soc Am; 2012 Mar; 131(3):2543-50. PubMed ID: 22423806 [TBL] [Abstract][Full Text] [Related]
7. Nonlinear frequency shifts in acoustical resonators with varying cross sections. Hamilton MF; Ilinskii YA; Zabolotskaya EA J Acoust Soc Am; 2009 Mar; 125(3):1310-9. PubMed ID: 19275288 [TBL] [Abstract][Full Text] [Related]
8. Unification and extension of monolithic state space and iterative cochlear models. Rapson MJ; Tapson JC; Karpul D J Acoust Soc Am; 2012 May; 131(5):3935-52. PubMed ID: 22559368 [TBL] [Abstract][Full Text] [Related]
9. Finite Element Framework for Computational Fluid Dynamics in FEBio. Ateshian GA; Shim JJ; Maas SA; Weiss JA J Biomech Eng; 2018 Feb; 140(2):0210011-02100117. PubMed ID: 29238817 [TBL] [Abstract][Full Text] [Related]
10. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure. Muhlestein MB; Haberman MR Proc Math Phys Eng Sci; 2016 Aug; 472(2192):20160438. PubMed ID: 27616932 [TBL] [Abstract][Full Text] [Related]
11. Homogenization of three-dimensional metamaterial objects and validation by a fast surface-integral equation solver. Liu XX; Massey JW; Wu MF; Kim KT; Shore RA; Yılmaz AE; Alù A Opt Express; 2013 Sep; 21(19):21714-27. PubMed ID: 24104066 [TBL] [Abstract][Full Text] [Related]
12. A series approximation to the Kirchhoff integral for Gaussian and exponential roughness covariance functions. Olson DR J Acoust Soc Am; 2021 Jun; 149(6):4239. PubMed ID: 34241449 [TBL] [Abstract][Full Text] [Related]
13. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media. Antony SJ; Kruyt NP Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031308. PubMed ID: 19391936 [TBL] [Abstract][Full Text] [Related]
14. Acoustical determination of the parameters governing thermal dissipation in porous media. Olny X; Panneton R J Acoust Soc Am; 2008 Feb; 123(2):814-24. PubMed ID: 18247886 [TBL] [Abstract][Full Text] [Related]
15. Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization. Spyrou LA; Brisard S; Danas K J Mech Behav Biomed Mater; 2019 Apr; 92():97-117. PubMed ID: 30677705 [TBL] [Abstract][Full Text] [Related]
16. Analytical model of the elastic behavior of a modified face-centered cubic lattice structure. Alaña M; Lopez-Arancibia A; Pradera-Mallabiabarrena A; Ruiz de Galarreta S J Mech Behav Biomed Mater; 2019 Oct; 98():357-368. PubMed ID: 31319282 [TBL] [Abstract][Full Text] [Related]
17. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues. Gültekin O; Rodoplu B; Dal H Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738 [TBL] [Abstract][Full Text] [Related]
18. Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics. Ghysels P; Samaey G; Tijskens B; Van Liedekerke P; Ramon H; Roose D Phys Biol; 2009 Mar; 6(1):016009. PubMed ID: 19321921 [TBL] [Abstract][Full Text] [Related]
19. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries. Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909 [TBL] [Abstract][Full Text] [Related]
20. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation. Guan W; Hu H; He X J Acoust Soc Am; 2009 Apr; 125(4):1942-50. PubMed ID: 19354370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]