BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37002604)

  • 1. Active mesh and neural network pipeline for cell aggregate segmentation.
    Smith MB; Sparks H; Almagro J; Chaigne A; Behrens A; Dunsby C; Salbreux G
    Biophys J; 2023 May; 122(9):1586-1599. PubMed ID: 37002604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images.
    Mela CA; Liu Y
    BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mandible segmentation from CT data for virtual surgical planning using an augmented two-stepped convolutional neural network.
    Pankert T; Lee H; Peters F; Hölzle F; Modabber A; Raith S
    Int J Comput Assist Radiol Surg; 2023 Aug; 18(8):1479-1488. PubMed ID: 36637748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUSAN: segment unannotated image structure using adversarial network.
    Liu F
    Magn Reson Med; 2019 May; 81(5):3330-3345. PubMed ID: 30536427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust algorithm for segmenting and tracking clustered cells in time-lapse fluorescent microscopy.
    Tarnawski W; Kurtcuoglu V; Lorek P; Bodych M; Rotter J; Muszkieta M; Piwowar Ł; Poulikakos D; Majkowski M; Ferrari A
    IEEE J Biomed Health Inform; 2013 Jul; 17(4):862-9. PubMed ID: 25055315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical gradient threshold technique for automated segmentation across image modalities and cell lines.
    Chalfoun J; Majurski M; Peskin A; Breen C; Bajcsy P; Brady M
    J Microsc; 2015 Oct; 260(1):86-99. PubMed ID: 26046924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-Net: A unified model for segmentation of various objects in microscopy images.
    Raza SEA; Cheung L; Shaban M; Graham S; Epstein D; Pelengaris S; Khan M; Rajpoot NM
    Med Image Anal; 2019 Feb; 52():160-173. PubMed ID: 30580111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.
    Mathew B; Schmitz A; Muñoz-Descalzo S; Ansari N; Pampaloni F; Stelzer EH; Fischer SC
    BMC Bioinformatics; 2015 Jun; 16():187. PubMed ID: 26049713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A convolutional neural network for segmentation of yeast cells without manual training annotations.
    Kruitbosch HT; Mzayek Y; Omlor S; Guerra P; Milias-Argeitis A
    Bioinformatics; 2022 Feb; 38(5):1427-1433. PubMed ID: 34893817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy.
    Jang J; Wang C; Zhang X; Choi HJ; Pan X; Lin B; Yu Y; Whittle C; Ryan M; Chen Y; Lee K
    Cell Rep Methods; 2021 Nov; 1(7):. PubMed ID: 34888542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy.
    Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M
    BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating cardiovascular model building with convolutional neural networks.
    Maher G; Wilson N; Marsden A
    Med Biol Eng Comput; 2019 Oct; 57(10):2319-2335. PubMed ID: 31446517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.
    Arslan S; Ersahin T; Cetin-Atalay R; Gunduz-Demir C
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1121-31. PubMed ID: 23549886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell nuclei segmentation in fluorescence microscopy images using inter- and intra-region discriminative information.
    Song Y; Cai W; Feng DD; Chen M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6087-90. PubMed ID: 24111128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.
    Guo Y; Xu X; Wang Y; Wang Y; Xia S; Yang Z
    Microsc Res Tech; 2014 Aug; 77(8):547-59. PubMed ID: 24777764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WBC-based segmentation and classification on microscopic images: a minor improvement.
    Lam XH; Ng KW; Yoong YJ; Ng SB
    F1000Res; 2021; 10():1168. PubMed ID: 35399225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated 3D light-sheet screening with high spatiotemporal resolution reveals mitotic phenotypes.
    Eismann B; Krieger TG; Beneke J; Bulkescher R; Adam L; Erfle H; Herrmann C; Eils R; Conrad C
    J Cell Sci; 2020 Jun; 133(11):. PubMed ID: 32295847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.