These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 37002946)
21. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting. Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010 [TBL] [Abstract][Full Text] [Related]
22. 3D bioprinted silk fibroin hydrogels for tissue engineering. Kim SH; Hong H; Ajiteru O; Sultan MT; Lee YJ; Lee JS; Lee OJ; Lee H; Park HS; Choi KY; Lee JS; Ju HW; Hong IS; Park CH Nat Protoc; 2021 Dec; 16(12):5484-5532. PubMed ID: 34716451 [TBL] [Abstract][Full Text] [Related]
23. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
24. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
25. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
26. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs. Raveendran N; Ivanovski S; Vaquette C Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098 [TBL] [Abstract][Full Text] [Related]
27. Novel Digital Light Processing Printing Strategy Using a Collagen-Based Bioink with Prospective Cross-Linker Procyanidins. Wu Z; Liu J; Lin J; Lu L; Tian J; Li L; Zhou C Biomacromolecules; 2022 Jan; 23(1):240-252. PubMed ID: 34931820 [TBL] [Abstract][Full Text] [Related]
28. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798 [TBL] [Abstract][Full Text] [Related]
30. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
31. Bioprinting EphrinB2-Modified Dental Pulp Stem Cells with Enhanced Osteogenic Capacity for Alveolar Bone Engineering. Wang W; Zhu Y; Li J; Geng T; Jia J; Wang X; Yuan C; Wang P Tissue Eng Part A; 2023 Apr; 29(7-8):244-255. PubMed ID: 36606680 [TBL] [Abstract][Full Text] [Related]
32. Noninvasive Three-Dimensional Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086 [TBL] [Abstract][Full Text] [Related]
33. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. Zhuang P; Ng WL; An J; Chua CK; Tan LP PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827 [TBL] [Abstract][Full Text] [Related]
34. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Jia W; Gungor-Ozkerim PS; Zhang YS; Yue K; Zhu K; Liu W; Pi Q; Byambaa B; Dokmeci MR; Shin SR; Khademhosseini A Biomaterials; 2016 Nov; 106():58-68. PubMed ID: 27552316 [TBL] [Abstract][Full Text] [Related]
35. Biocompatibility evaluation of antioxidant cocktail loaded gelatin methacrylamide as bioink for extrusion-based 3D bioprinting. J AS; Velayudhan S; Pr AK Biomed Mater; 2023 Jun; 18(4):. PubMed ID: 37220753 [TBL] [Abstract][Full Text] [Related]
36. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications. Kallingal N; Ramakrishnan R; Krishnan V K J Biomater Sci Polym Ed; 2023 Apr; 34(6):768-790. PubMed ID: 36346058 [TBL] [Abstract][Full Text] [Related]
37. Microtissue-Based Bioink as a Chondrocyte Microshelter for DLP Bioprinting. Xie X; Wu S; Mou S; Guo N; Wang Z; Sun J Adv Healthc Mater; 2022 Nov; 11(22):e2201877. PubMed ID: 36085440 [TBL] [Abstract][Full Text] [Related]
38. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722 [TBL] [Abstract][Full Text] [Related]
39. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Mahdavi SS; Abdekhodaie MJ; Kumar H; Mashayekhan S; Baradaran-Rafii A; Kim K Ann Biomed Eng; 2020 Jul; 48(7):1955-1970. PubMed ID: 32504140 [TBL] [Abstract][Full Text] [Related]
40. Droplet bioprinting of acellular and cell-laden structures at high-resolutions. Kunwar P; Aryal U; Poudel A; Fougnier D; Geffert ZJ; Xie R; Li Z; Soman P Biofabrication; 2024 May; 16(3):. PubMed ID: 38749419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]