BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37003036)

  • 1. Single-cell RNA sequencing in skeletal muscle developmental biology.
    Cai C; Yue Y; Yue B
    Biomed Pharmacother; 2023 Jun; 162():114631. PubMed ID: 37003036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing.
    Cai C; Wan P; Wang H; Cai X; Wang J; Chai Z; Wang J; Wang H; Zhang M; Yang N; Wu Z; Zhu J; Yang X; Li Y; Yue B; Dang R; Zhong J
    Cell Prolif; 2023 Sep; 56(9):e13430. PubMed ID: 36855961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis.
    Wu J; Yue B
    Biomed Pharmacother; 2024 May; 174():116563. PubMed ID: 38583341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig.
    Cai S; Hu B; Wang X; Liu T; Lin Z; Tong X; Xu R; Chen M; Duo T; Zhu Q; Liang Z; Li E; Chen Y; Li J; Liu X; Mo D
    BMC Biol; 2023 Feb; 21(1):19. PubMed ID: 36726129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell RNA-seq analysis of Mesp1-induced skeletal myogenic development.
    Penaloza JS; Pappas MP; Hagen HR; Xie N; Chan SSK
    Biochem Biophys Res Commun; 2019 Dec; 520(2):284-290. PubMed ID: 31590918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making muscle: skeletal myogenesis
    Chal J; Pourquié O
    Development; 2017 Jun; 144(12):2104-2122. PubMed ID: 28634270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins.
    Langlois S; Cowan KN
    Adv Exp Med Biol; 2017; 925():57-73. PubMed ID: 27518505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemokine-like receptor 1 regulates skeletal muscle cell myogenesis.
    Issa ME; Muruganandan S; Ernst MC; Parlee SD; Zabel BA; Butcher EC; Sinal CJ; Goralski KB
    Am J Physiol Cell Physiol; 2012 Jun; 302(11):C1621-31. PubMed ID: 22460713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers.
    Petrany MJ; Swoboda CO; Sun C; Chetal K; Chen X; Weirauch MT; Salomonis N; Millay DP
    Nat Commun; 2020 Dec; 11(1):6374. PubMed ID: 33311464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis.
    Bernardi H; Gay S; Fedon Y; Vernus B; Bonnieu A; Bacou F
    Am J Physiol Cell Physiol; 2011 May; 300(5):C1122-38. PubMed ID: 21248078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RGMa can induce skeletal muscle cell hyperplasia via association with neogenin signalling pathway.
    do Carmo Costa A; Copola AGL; Carvalho E Souza C; Nogueira JM; Silva GAB; Jorge EC
    In Vitro Cell Dev Biol Anim; 2021 Apr; 57(4):415-427. PubMed ID: 33748906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of different myogenic pathways: myf-5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm.
    Cossu G; Kelly R; Tajbakhsh S; Di Donna S; Vivarelli E; Buckingham M
    Development; 1996 Feb; 122(2):429-37. PubMed ID: 8625794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell RNA Sequencing Reveals the Cellular Landscape of
    Xiao W; Jiang N; Ji Z; Ni M; Zhang Z; Zhao Q; Huang R; Li P; Hou L
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The generation of fiber diversity during myogenesis.
    Wigmore PM; Dunglison GF
    Int J Dev Biol; 1998 Mar; 42(2):117-25. PubMed ID: 9551857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Cell RNA-Sequencing Provides Insight into Skeletal Muscle Evolution during the Selection of Muscle Characteristics.
    Xu D; Wan B; Qiu K; Wang Y; Zhang X; Jiao N; Yan E; Wu J; Yu R; Gao S; Du M; Liu C; Li M; Fan G; Yin J
    Adv Sci (Weinh); 2023 Dec; 10(35):e2305080. PubMed ID: 37870215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course and side-by-side analysis of mesodermal, pre-myogenic, myogenic and differentiated cell markers in the chicken model for skeletal muscle formation.
    Berti F; Nogueira JM; Wöhrle S; Sobreira DR; Hawrot K; Dietrich S
    J Anat; 2015 Sep; 227(3):361-82. PubMed ID: 26278933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Key regulators of skeletal myogenesis].
    Kopantseva EE; Belyavsky AV
    Mol Biol (Mosk); 2016; 50(2):195-222. PubMed ID: 27239841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platelet releasate promotes skeletal myogenesis by increasing muscle stem cell commitment to differentiation and accelerates muscle regeneration following acute injury.
    Scully D; Sfyri P; Verpoorten S; Papadopoulos P; Muñoz-Turrillas MC; Mitchell R; Aburima A; Patel K; Gutiérrez L; Naseem KM; Matsakas A
    Acta Physiol (Oxf); 2019 Mar; 225(3):e13207. PubMed ID: 30339324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Interactions of proliferation and differentiation signaling pathways in myogenesis].
    Milewska M; Grabiec K; Grzelkowska-Kowalczyk K
    Postepy Hig Med Dosw (Online); 2014 May; 68():516-26. PubMed ID: 24864103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Somitogenesis: From somite to skeletal muscle.
    Musumeci G; Castrogiovanni P; Coleman R; Szychlinska MA; Salvatorelli L; Parenti R; Magro G; Imbesi R
    Acta Histochem; 2015; 117(4-5):313-28. PubMed ID: 25850375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.