These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37003118)

  • 21. A sequential leaching procedure for efficient recovery of gold and silver from waste mobile phone printed circuit boards.
    Zhang ZY; Wu L; He K; Zhang FS
    Waste Manag; 2022 Nov; 153():13-19. PubMed ID: 36029533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NOx removal and copper recovery from the leaching process for waste printed circuit boards: performance evaluation and potential environmental impact assessment.
    Chen TL; Chen YS; Chiang PC; Chen YH; Hsu CH
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):9935-9947. PubMed ID: 37004617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper leaching from electronic waste for the improvement of gold recycling.
    Torres R; Lapidus GT
    Waste Manag; 2016 Nov; 57():131-139. PubMed ID: 26969289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated bioleaching of copper metal from waste printed circuit board-a comprehensive review of approaches and challenges.
    Awasthi AK; Zeng X; Li J
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21141-21156. PubMed ID: 27678000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High temperature investigations on optimising the recovery of copper from waste printed circuit boards.
    Cayumil R; Ikram-Ul-Haq M; Khanna R; Saini R; Mukherjee PS; Mishra BK; Sahajwalla V
    Waste Manag; 2018 Mar; 73():556-565. PubMed ID: 28089398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid Dissolution of Noble Metals in Organic Solvents.
    Nag A; Morrison CA; Love JB
    ChemSusChem; 2022 Oct; 15(20):e202201285. PubMed ID: 35929761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile and Cost-Effective Approach for Copper Recovery from Waste Printed Circuit Boards via a Sequential Mechanochemical/Leaching/Recrystallization Process.
    Liu K; Yang J; Hou H; Liang S; Chen Y; Wang J; Liu B; Xiao K; Hu J; Deng H
    Environ Sci Technol; 2019 Mar; 53(5):2748-2757. PubMed ID: 30698959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofilm for leaching precious metals from waste printed circuit boards using biocyanidation technology.
    Hu J; Tang Y; Ai F; Lin M; Ruan J
    J Hazard Mater; 2021 Feb; 403():123586. PubMed ID: 32795820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Acid Leaching Pre-Treatment on Gold Extraction from Printed Circuit Boards of Spent Mobile Phones.
    Ippolito NM; Medici F; Pietrelli L; Piga L
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33450981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recovery of heavy metals from waste printed circuit boards: statistical optimization of leaching and residue characterization.
    Khayyam Nekouei R; Pahlevani F; Golmohammadzadeh R; Assefi M; Rajarao R; Chen YH; Sahajwalla V
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24417-24429. PubMed ID: 31230240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical and thermal processing of Waste Printed Circuit Boards aiming for the recovery of gold and copper.
    Ventura E; Futuro A; Pinho SC; Almeida MF; Dias JM
    J Environ Manage; 2018 Oct; 223():297-305. PubMed ID: 29935444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on leaching characteristics of electronic waste for metal recovery using inorganic and organic acids and base.
    Das D; Mukherjee S; Chaudhuri MG
    Waste Manag Res; 2021 Feb; 39(2):242-249. PubMed ID: 32564701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel recovery method of copper from waste printed circuit boards by supercritical methanol process: Preparation of ultrafine copper materials.
    Xiu FR; Weng H; Qi Y; Yu G; Zhang Z; Zhang FS; Chen M
    Waste Manag; 2017 Feb; 60():643-651. PubMed ID: 27876566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment.
    Pokhrel P; Lin SL; Tsai CT
    J Environ Manage; 2020 Dec; 276():111276. PubMed ID: 32871467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid.
    Huang J; Chen M; Chen H; Chen S; Sun Q
    Waste Manag; 2014 Feb; 34(2):483-8. PubMed ID: 24246577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Process and systematic study of gold recovery from flexible printed circuit boards (FPCBs) using a choline chloride-ethylene glycol system.
    Wang R; Fan G; Zhang C
    Waste Manag; 2024 Apr; 178():351-361. PubMed ID: 38430749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the non-metal fraction of the processed waste printed circuit boards.
    Kumar A; Holuszko ME; Janke T
    Waste Manag; 2018 May; 75():94-102. PubMed ID: 29449113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative life cycle assessment of copper and gold recovery from waste printed circuit boards: Pyrometallurgy, chemical leaching and bioleaching.
    Schwartz E; He H; Frost K; Nguyen BH; Ogunseitan OA; Schoenung JM
    J Hazard Mater; 2024 Jul; 473():134545. PubMed ID: 38761760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of copper rich metallic phases from waste printed circuit boards.
    Cayumil R; Khanna R; Ikram-Ul-Haq M; Rajarao R; Hill A; Sahajwalla V
    Waste Manag; 2014 Oct; 34(10):1783-92. PubMed ID: 25052340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans.
    Chen S; Yang Y; Liu C; Dong F; Liu B
    Chemosphere; 2015 Dec; 141():162-8. PubMed ID: 26196406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.