These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37003210)

  • 1. Energy partitioning in laser-induced millimeter-sized spherical cavitation up to the fourth oscillation.
    Wen H; Yao Z; Zhong Q; Tian Y; Sun Y; Wang F
    Ultrason Sonochem; 2023 May; 95():106391. PubMed ID: 37003210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser induced spherical bubble dynamics in partially confined geometry with acoustic feedback from container walls.
    Fu L; Liang XX; Wang S; Wang S; Wang P; Zhang Z; Wang J; Vogel A; Yao C
    Ultrason Sonochem; 2023 Dec; 101():106664. PubMed ID: 37931344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions.
    Brujan EA
    Ultrason Sonochem; 2019 Nov; 58():104694. PubMed ID: 31450304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shock wave emission upon spherical bubble collapse during cavitation-induced megasonic surface cleaning.
    Minsier V; Proost J
    Ultrason Sonochem; 2008 Apr; 15(4):598-604. PubMed ID: 17662636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy partition at the collapse of spherical cavitation bubbles.
    Tinguely M; Obreschkow D; Kobel P; Dorsaz N; de Bosset A; Farhat M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046315. PubMed ID: 23214685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time.
    Zubalic E; Vella D; Babnik A; Jezeršek M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation on multiple breakdown in water induced by focused nanosecond laser.
    Fu L; Wang S; Xin J; Wang S; Yao C; Zhang Z; Wang J
    Opt Express; 2018 Oct; 26(22):28560-28575. PubMed ID: 30470031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.
    Lukač N; Jezeršek M
    Lasers Med Sci; 2018 May; 33(4):823-833. PubMed ID: 29327088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced cavitation bubbles and shock waves in water near a concave surface.
    Požar T; Agrež V; Petkovšek R
    Ultrason Sonochem; 2021 May; 73():105456. PubMed ID: 33517094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deconvolution of acoustically detected bubble-collapse shock waves.
    Johansen K; Song JH; Johnston K; Prentice P
    Ultrasonics; 2017 Jan; 73():144-153. PubMed ID: 27657479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of shock-induced bubble collapse dynamics and fluid-solid interactions during shock-wave lithotripsy.
    Koukas E; Papoutsakis A; Gavaises M
    Ultrason Sonochem; 2023 May; 95():106393. PubMed ID: 37031534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissimilar cavitation dynamics and damage patterns produced by parallel fiber alignment to the stone surface in holmium:yttrium aluminum garnet laser lithotripsy.
    Xiang G; Li D; Chen J; Mishra A; Sankin G; Zhao X; Tang Y; Wang K; Yao J; Zhong P
    Phys Fluids (1994); 2023 Mar; 35(3):033303. PubMed ID: 36896246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses.
    Vogel A; Busch S; Jungnickel K; Birngruber R
    Lasers Surg Med; 1994; 15(1):32-43. PubMed ID: 7997046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water.
    Chen X; Xu RQ; Chen JP; Shen ZH; Jian L; Ni XW
    Appl Opt; 2004 Jun; 43(16):3251-7. PubMed ID: 15181804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble.
    Huang G; Zhang M; Han L; Ma X; Huang B
    Ultrason Sonochem; 2021 Apr; 72():105440. PubMed ID: 33421930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of mechanisms of shock wave generation by collapse of cavitation bubbles near particles.
    Hu J; Liu Y; Duan J; Yu J; Zhang Y; Gao D; Zhang Y
    Ultrason Sonochem; 2024 Aug; 108():106952. PubMed ID: 38878714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation on the characteristics of the shock wave emitted by the cavitation bubble near the air bubble.
    Zhu J; Zhang M; Tan Z; Han L; Huang B
    Ultrason Sonochem; 2024 Mar; 104():106846. PubMed ID: 38492554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.