These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37003221)

  • 1. Energy-water nexus in low-carbon electric power systems: A simulation-based inexact optimization model.
    Huang J; Tan Q; Zhang T; Wang S
    J Environ Manage; 2023 Jul; 338():117744. PubMed ID: 37003221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of clean development mechanism on energy-water-carbon nexus optimization in Hebei, China: A hierarchical model based discussion.
    Tan Q; Liu Y; Ye Q
    J Environ Manage; 2020 Jun; 264():110441. PubMed ID: 32250886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon emission of energy consumption of the electric vehicle development scenario.
    Wang M; Wang Y; Chen L; Yang Y; Li X
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42401-42413. PubMed ID: 33813710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional decomposition analysis of electric carbon productivity from the perspective of production and consumption in China.
    Chen G; Hou F; Chang K
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1508-1518. PubMed ID: 29098575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing future electric power sector considering water-carbon policies in the water-scarce North China Grid.
    Liao X; Huang L; Xiong S; Ma X
    Sci Total Environ; 2021 May; 768():144865. PubMed ID: 33434810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scenario analysis of carbon emissions' anti-driving effect on Qingdao's energy structure adjustment with an optimization model, Part II: Energy system planning and management.
    Wu CB; Huang GH; Liu ZP; Zhen JL; Yin JG
    J Environ Manage; 2017 Mar; 188():120-136. PubMed ID: 28006740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.
    Hertwich EG; Gibon T; Bouman EA; Arvesen A; Suh S; Heath GA; Bergesen JD; Ramirez A; Vega MI; Shi L
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6277-82. PubMed ID: 25288741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of life cycle carbon dioxide emissions and embodied energy in four renewable electricity generation technologies in New Zealand.
    Rule BM; Worth ZJ; Boyle CA
    Environ Sci Technol; 2009 Aug; 43(16):6406-13. PubMed ID: 19746744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-Energy-Carbon Nexus: Greenhouse Gas Emissions from Integrated Urban Drainage Systems in China.
    Su Q; Dai H; Xie S; Yu X; Lin Y; Singh VP; Karthikeyan R
    Environ Sci Technol; 2023 Feb; 57(5):2093-2104. PubMed ID: 36696288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the carbon-energy-water nexus in a rapidly urbanizing catchment: A general equilibrium assessment.
    Su Q; Dai H; Lin Y; Chen H; Karthikeyan R
    J Environ Manage; 2018 Nov; 225():93-103. PubMed ID: 30075307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-current analysis among electricity-water-carbon for the power sector in China.
    Tang B; Wu Y; Yu B; Li R; Wang X
    Sci Total Environ; 2020 Nov; 745():141005. PubMed ID: 32726702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Who shapes the embodied carbon dioxide emissions of interconnected power grids in China? A seasonal perspective.
    Ma JJ
    J Environ Manage; 2022 Dec; 324():116422. PubMed ID: 36352720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing sustainable development in arid river basins: A multi-objective approach to balancing water, energy, economy, carbon and ecology nexus.
    Zhang Y; Li Y; Huang G; Ma Y; Zhou Y
    Environ Sci Ecotechnol; 2025 Jan; 23():100481. PubMed ID: 39318542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical, economic, and environmental assessment of a stand-alone power system based on diesel engine with/without energy storage using an optimization algorithm: A case study in China.
    Chen Y; Zhang S
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):38585-38602. PubMed ID: 38133756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does electricity consumption and globalization increase pollutant emissions? Implications for environmental sustainability target for China.
    Akadiri SS; Alola AA; Bekun FV; Etokakpan MU
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25450-25460. PubMed ID: 32350835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasible Distributed Energy Supply Options for Household Energy Use in China from a Carbon Neutral Perspective.
    Zhang Y; Wang S; Shao W; Hao J
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of carbon peaking and carbon neutral pathways in China's power sector under a 1.5 °C temperature control target.
    Wu G; Niu D
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):85062-85080. PubMed ID: 35790631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water consumption of electric power system in China: from electricity generation to consumption.
    Jin Y; Wang L; He D
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):101903-101910. PubMed ID: 37639094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electricity consumption on carbon intensity across Chinese manufacturing sectors.
    Zhang H
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):27414-27434. PubMed ID: 31327141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.