These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 37003228)
1. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: Comparison of removal efficiencies and in-depth analysis of rejection mechanisms. Matin A; Jillani SMS; Baig U; Ihsanullah I; Alhooshani K J Environ Manage; 2023 Jul; 338():117682. PubMed ID: 37003228 [TBL] [Abstract][Full Text] [Related]
2. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes. Shah IA; Ali S; Yang Z; Ihsanullah I; Huang H Chemosphere; 2022 Sep; 303(Pt 3):135211. PubMed ID: 35660049 [TBL] [Abstract][Full Text] [Related]
3. Evidence of solute-solute interactions and cake enhanced concentration polarization during removal of pharmaceuticals from urban wastewater by nanofiltration. Azaïs A; Mendret J; Petit E; Brosillon S Water Res; 2016 Nov; 104():156-167. PubMed ID: 27522026 [TBL] [Abstract][Full Text] [Related]
4. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of commercial nanofiltration and reverse osmosis membrane filtration to remove per-and polyfluoroalkyl substances (PFAS): Effects of transmembrane pressures and water matrices. Ma Q; Lei Q; Liu F; Song Z; Khusid B; Zhang W Water Environ Res; 2024 Feb; 96(2):e10983. PubMed ID: 38291820 [TBL] [Abstract][Full Text] [Related]
6. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review. Khoo YS; Goh PS; Lau WJ; Ismail AF; Abdullah MS; Mohd Ghazali NH; Yahaya NKEM; Hashim N; Othman AR; Mohammed A; Kerisnan NDA; Mohamed Yusoff MA; Fazlin Hashim NH; Karim J; Abdullah NS Chemosphere; 2022 Oct; 305():135151. PubMed ID: 35654232 [TBL] [Abstract][Full Text] [Related]
7. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. Lin YL; Chiou JH; Lee CH J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524 [TBL] [Abstract][Full Text] [Related]
8. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Yüksel S; Kabay N; Yüksel M J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784 [TBL] [Abstract][Full Text] [Related]
9. Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Garcia-Ivars J; Martella L; Massella M; Carbonell-Alcaina C; Alcaina-Miranda MI; Iborra-Clar MI Water Res; 2017 Nov; 125():360-373. PubMed ID: 28881212 [TBL] [Abstract][Full Text] [Related]
10. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. Dolar D; Vuković A; Asperger D; Kosutić K J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537 [TBL] [Abstract][Full Text] [Related]
11. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater. Gwon EM; Yu MJ; Oh HK; Ylee YH Water Res; 2003 Jul; 37(12):2989-97. PubMed ID: 12767302 [TBL] [Abstract][Full Text] [Related]
12. Effects of feed solution characteristics and membrane fouling on the removal of THMs by UF/NF/RO membranes. Fang C; Ou T; Wang X; Rui M; Chu W Chemosphere; 2020 Dec; 260():127625. PubMed ID: 32758776 [TBL] [Abstract][Full Text] [Related]
13. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up. D'Haese A; Le-Clech P; Van Nevel S; Verbeken K; Cornelissen ER; Khan SJ; Verliefde AR Water Res; 2013 Sep; 47(14):5232-44. PubMed ID: 23866149 [TBL] [Abstract][Full Text] [Related]
14. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes. Yang L; Xia C; Jiang J; Chen X; Zhou Y; Yuan C; Bai L; Meng S; Cao G J Hazard Mater; 2024 Jan; 461():132628. PubMed ID: 37783143 [TBL] [Abstract][Full Text] [Related]
15. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Wang L; Albasi C; Faucet-Marquis V; Pfohl-Leszkowicz A; Dorandeu C; Marion B; Causserand C Water Res; 2009 Sep; 43(17):4115-22. PubMed ID: 19592068 [TBL] [Abstract][Full Text] [Related]
16. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents. Turan M; Ates A; Inanc B Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123 [TBL] [Abstract][Full Text] [Related]
17. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process. Tay MF; Liu C; Cornelissen ER; Wu B; Chong TH Water Res; 2018 Feb; 129():180-189. PubMed ID: 29149673 [TBL] [Abstract][Full Text] [Related]
18. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes. Sanyal O; Lee I J Nanosci Nanotechnol; 2014 Mar; 14(3):2178-89. PubMed ID: 24745210 [TBL] [Abstract][Full Text] [Related]
19. Rejection of trace organic compounds by high-pressure membranes. Kim TU; Amy G; Drewes JE Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994 [TBL] [Abstract][Full Text] [Related]
20. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges. Castaño Osorio S; Biesheuvel PM; Spruijt E; Dykstra JE; van der Wal A Water Res; 2022 Oct; 225():119130. PubMed ID: 36240724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]