These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 37003328)

  • 1. Recent progress of bioplastics in their properties, standards, certifications and regulations: A review.
    Jayakumar A; Radoor S; Siengchin S; Shin GH; Kim JT
    Sci Total Environ; 2023 Jun; 878():163156. PubMed ID: 37003328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment.
    Ali Z; Abdullah M; Yasin MT; Amanat K; Ahmad K; Ahmed I; Qaisrani MM; Khan J
    Environ Res; 2024 Mar; 244():117949. PubMed ID: 38109961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review.
    Adetunji AI; Erasmus M
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.
    Polman EMN; Gruter GM; Parsons JR; Tietema A
    Sci Total Environ; 2021 Jan; 753():141953. PubMed ID: 32896737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock.
    Thomas AP; Kasa VP; Dubey BK; Sen R; Sarmah AK
    Sci Total Environ; 2023 Dec; 904():167243. PubMed ID: 37741416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review.
    Idris SN; Amelia TSM; Bhubalan K; Lazim AMM; Zakwan NAMA; Jamaluddin MI; Santhanam R; Amirul AA; Vigneswari S; Ramakrishna S
    Environ Res; 2023 Aug; 231(Pt 1):115988. PubMed ID: 37105296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroalgae Bioplastics: A Sustainable Shift to Mitigate the Ecological Impact of Petroleum-Based Plastics.
    Elkaliny NE; Alzamel NM; Moussa SH; Elodamy NI; Madkor EA; Ibrahim EM; Elshobary ME; Ismail GA
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials.
    Asgher M; Qamar SA; Bilal M; Iqbal HMN
    Food Res Int; 2020 Nov; 137():109625. PubMed ID: 33233213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovations in applications and prospects of bioplastics and biopolymers: a review.
    Nanda S; Patra BR; Patel R; Bakos J; Dalai AK
    Environ Chem Lett; 2022; 20(1):379-395. PubMed ID: 34867134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications.
    Behera S; Priyadarshanee M; Vandana ; Das S
    Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in PBAT-based films and food packaging applications: A mini-review.
    Roy S; Ghosh T; Zhang W; Rhim JW
    Food Chem; 2024 Mar; 437(Pt 1):137822. PubMed ID: 37897823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgae as Contributors to Produce Biopolymers.
    Madadi R; Maljaee H; Serafim LS; Ventura SPM
    Mar Drugs; 2021 Aug; 19(8):. PubMed ID: 34436305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leads and hurdles to sustainable microbial bioplastic production.
    Varghese S; Dhanraj ND; Rebello S; Sindhu R; Binod P; Pandey A; Jisha MS; Awasthi MK
    Chemosphere; 2022 Oct; 305():135390. PubMed ID: 35728665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update.
    Zhao X; Cornish K; Vodovotz Y
    Environ Sci Technol; 2020 Apr; 54(8):4712-4732. PubMed ID: 32202110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can bioplastics always offer a truly sustainable alternative to fossil-based plastics?
    Serrano-Aguirre L; Prieto MA
    Microb Biotechnol; 2024 Apr; 17(4):e14458. PubMed ID: 38568795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What Are "Bioplastics"? Defining Renewability, Biosynthesis, Biodegradability, and Biocompatibility.
    Lackner M; Mukherjee A; Koller M
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioplastics from waste biomass of marine and poultry industries.
    Arif A; Azeem F; Rasul I; Siddique MH; Zubair M; Muneer F; Zaheer W; Nadeem H
    J Biosci; 2023; 48():. PubMed ID: 37021675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable utilization of fruit and vegetable waste bioresources for bioplastics production.
    Gong L; Passari AK; Yin C; Kumar Thakur V; Newbold J; Clark W; Jiang Y; Kumar S; Gupta VK
    Crit Rev Biotechnol; 2024 Mar; 44(2):236-254. PubMed ID: 36642423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic Biopolymers and Their Composites: Advantages and Limitations-An Overview.
    Mtibe A; Motloung MP; Bandyopadhyay J; Ray SS
    Macromol Rapid Commun; 2021 Aug; 42(15):e2100130. PubMed ID: 34216411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products.
    García-Depraect O; Bordel S; Lebrero R; Santos-Beneit F; Börner RA; Börner T; Muñoz R
    Biotechnol Adv; 2021 Dec; 53():107772. PubMed ID: 34015389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.