These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37003375)
1. A functional lignin for heavy metal ions adsorption and wound care dressing. Du B; Li W; Zhu H; Xu J; Wang Q; Shou X; Wang X; Zhou J Int J Biol Macromol; 2023 Jun; 239():124268. PubMed ID: 37003375 [TBL] [Abstract][Full Text] [Related]
2. Designed synthesis of multifunctional lignin-based adsorbent for efficient heavy metal ions removal and electromagnetic wave absorption. Du B; Chai L; Zheng Q; Liu Y; Wang X; Chen X; Zhai S; Zhou J; Sun RC Int J Biol Macromol; 2023 Apr; 234():123668. PubMed ID: 36796567 [TBL] [Abstract][Full Text] [Related]
3. Effective Removal of Pb(II) Ions by Electrospun PAN/Sago Lignin-based Activated Carbon Nanofibers. Nordin NA; Abdul Rahman N; Abdullah AH Molecules; 2020 Jul; 25(13):. PubMed ID: 32640766 [TBL] [Abstract][Full Text] [Related]
4. Designed synthesis of demethylated-hydroxymethylated lignin-based adsorbent for removal of Cr(VI) ions from wastewater. Chen X; Li W; Wang A; Chang Z; Xu L; Zhang K; Guo D; Zhao H; Sha L Int J Biol Macromol; 2024 Nov; 280(Pt 4):135950. PubMed ID: 39343260 [TBL] [Abstract][Full Text] [Related]
5. Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal. Popovic AL; Rusmirovic JD; Velickovic Z; Radovanovic Z; Ristic M; Pavlovic VP; Marinkovic AD Int J Biol Macromol; 2020 Aug; 156():1160-1173. PubMed ID: 31756461 [TBL] [Abstract][Full Text] [Related]
6. Lignin extraction from barley straw using ultrasound-assisted treatment method for a lignin-based biocomposite preparation with remarkable adsorption capacity for heavy metal. Mohammadabadi SI; Javanbakht V Int J Biol Macromol; 2020 Dec; 164():1133-1148. PubMed ID: 32679319 [TBL] [Abstract][Full Text] [Related]
7. Preparation of a Novel Lignin Nanosphere Adsorbent for Enhancing Adsorption of Lead. Liu C; Li Y; Hou Y Molecules; 2019 Jul; 24(15):. PubMed ID: 31349562 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of uniform lignin nanoparticles with tunable size for potential wound healing application. Du B; Li W; Bai Y; Pan Z; Wang Q; Wang X; Ding H; Lv G; Zhou J Int J Biol Macromol; 2022 Aug; 214():170-180. PubMed ID: 35709869 [TBL] [Abstract][Full Text] [Related]
9. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Du Z; Zheng T; Wang P; Hao L; Wang Y Bioresour Technol; 2016 Feb; 201():41-9. PubMed ID: 26630582 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of metal ions on lignin. Guo X; Zhang S; Shan XQ J Hazard Mater; 2008 Feb; 151(1):134-42. PubMed ID: 17587495 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic valorisation of lignocellulosic biomass green sorbents for toxic pollutants removal. Šehović E; Memić M; Sulejmanović J; Hameed M; Begić S; Ljubijankić N; Selović A; Ghfar AA; Sher F Chemosphere; 2022 Nov; 307(Pt 1):135737. PubMed ID: 35850218 [TBL] [Abstract][Full Text] [Related]
12. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin. Jin Y; Zeng C; Lü QF; Yu Y Int J Biol Macromol; 2019 Feb; 123():50-58. PubMed ID: 30391430 [TBL] [Abstract][Full Text] [Related]
13. Self-templated microwave-assisted hydrothermal synthesis of two-dimensional holey hydroxyapatite nanosheets for efficient heavy metal removal. Su Y; Wang J; Li S; Zhu J; Liu W; Zhang Z Environ Sci Pollut Res Int; 2019 Oct; 26(29):30076-30086. PubMed ID: 31418146 [TBL] [Abstract][Full Text] [Related]
14. Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. Hoang AT; Kumar S; Lichtfouse E; Cheng CK; Varma RS; Senthilkumar N; Phong Nguyen PQ; Nguyen XP Chemosphere; 2022 Sep; 302():134825. PubMed ID: 35526681 [TBL] [Abstract][Full Text] [Related]
15. Constructing the vacancies and defects by hemp stem core alkali extraction residue biochar for highly effective removal of heavy metal ions. He T; Liu Z; Zhou W; Cheng X; He L; Guan Q; Zhou H J Environ Manage; 2022 Dec; 323():116256. PubMed ID: 36126592 [TBL] [Abstract][Full Text] [Related]
16. Construction of a Lignosulfonate-Lysine Hydrogel for the Adsorption of Heavy Metal Ions. Jiang C; Wang X; Hou B; Hao C; Li X; Wu J J Agric Food Chem; 2020 Mar; 68(10):3050-3060. PubMed ID: 32069040 [TBL] [Abstract][Full Text] [Related]
17. Effective removal of heavy metals from water using porous lignin-based adsorbents. Wang X; Li X; Peng L; Han S; Hao C; Jiang C; Wang H; Fan X Chemosphere; 2021 Sep; 279():130504. PubMed ID: 33892455 [TBL] [Abstract][Full Text] [Related]
18. Selective adsorption of heavy metals from water by a hyper-branched magnetic composite material: Characterization, performance, and mechanism. Zeng X; Zhang G; Zhu J J Environ Manage; 2022 Jul; 314():114979. PubMed ID: 35452884 [TBL] [Abstract][Full Text] [Related]
19. Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent. Bartczak P; Klapiszewski Ł; Wysokowski M; Majchrzak I; Czernicka W; Piasecki A; Ehrlich H; Jesionowski T J Environ Manage; 2017 Dec; 204(Pt 1):300-310. PubMed ID: 28898751 [TBL] [Abstract][Full Text] [Related]
20. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. Ahmadijokani F; Tajahmadi S; Bahi A; Molavi H; Rezakazemi M; Ko F; Aminabhavi TM; Arjmand M Chemosphere; 2021 Feb; 264(Pt 2):128466. PubMed ID: 33065327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]