These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37003394)

  • 41. Bioinspired Superhydrophobic/Superhydrophilic Janus Copper Foam for On-Demand Oil/Water Separation.
    Liu C; Peng Y; Huang C; Ning Y; Shang J; Li Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11981-11988. PubMed ID: 35220721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly efficient reusable superhydrophobic sponge prepared by a facile, simple and cost effective biomimetic bonding method for oil absorption.
    Wang J; Chen Y; Xu Q; Cai M; Shi Q; Gao J
    Sci Rep; 2021 Jun; 11(1):11960. PubMed ID: 34099822
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Green fabrication of durable foam composites with asymmetric wettability by an emulsion spray-coating method for photothermally induced crude oil cleanup.
    Yan J; Wu Y; Guo Z; Su Q; Xing W; Wen J; Tang L; Zha J; Gao J
    J Colloid Interface Sci; 2023 Oct; 648():798-808. PubMed ID: 37327623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil-Water Separation.
    Li D; Zhang S; Zhao Z; Miao Z; Zhang G; Shi X
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biobased Castor Oil-Based Polyurethane Foams Grafted with Octadecylsilane-Modified Diatomite for Use as Eco-Friendly and Low-Cost Sorbents for Crude Oil Clean-Up Applications.
    Perera HJ; Goyal A; Alhassan SM; Banu H
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501710
    [TBL] [Abstract][Full Text] [Related]  

  • 46. One-Step Preparation of Robust Superhydrophobic Foam for Oil/Water Separation by Pulse Electrodeposition.
    Zhang Y; Liu J; Ouyang L; Li J; Xie G; Yan Y; Weng C
    Langmuir; 2021 Jun; 37(23):7043-7054. PubMed ID: 34080884
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Polydopamine-Assisted Surface Coating of MIL-53 and Dodecanethiol on a Melamine Sponge for Oil-Water Separation.
    Dong X; Cui M; Huang R; Su R; Qi W; He Z
    Langmuir; 2020 Feb; 36(5):1212-1220. PubMed ID: 31952445
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Durable Superhydrophobic/Superoleophilic Graphene-Based Foam for High-Efficiency Oil Spill Cleanups and Recovery.
    Chen C; Zhu X; Chen B
    Environ Sci Technol; 2019 Feb; 53(3):1509-1517. PubMed ID: 30612426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil-Water Separation.
    Zhou W; Li S; Liu Y; Xu Z; Wei S; Wang G; Lian J; Jiang Q
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9841-9848. PubMed ID: 29493207
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solvent-free processing of eco-friendly magnetic and superhydrophobic absorbent from all-plant-based materials for efficient oil and organic solvent sorption.
    Wu D; Wang T; Hu S; Wu W; Lu B; Huang X; Yu W; Wang M; Wang GG; Zhang J
    Sci Total Environ; 2021 Dec; 800():149558. PubMed ID: 34391146
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facilitate the preparation of naturally modified and self-healing superhydrophobic/superoleophilic biochar-based foams for efficient oil-water separation.
    Hu K; Lyu H; Duan H; Hu Z; Shen B
    J Hazard Mater; 2024 Mar; 465():133489. PubMed ID: 38219594
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions.
    Gong L; Zhu H; Wu W; Lin D; Yang K
    J Hazard Mater; 2022 Mar; 425():127980. PubMed ID: 34883374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-expansion polypropylene foam prepared in non-crystalline state and oil adsorption performance of open-cell foam.
    Hou J; Zhao G; Zhang L; Wang G; Li B
    J Colloid Interface Sci; 2019 Apr; 542():233-242. PubMed ID: 30763890
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Superhydrophobic Nanodiamond-Functionalized Melamine Sponge for Oil/Water Separation.
    Wang H; Zhao Q; Zhang K; Wang F; Zhi J; Shan CX
    Langmuir; 2022 Sep; 38(37):11304-11313. PubMed ID: 36070415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation of a porous superhydrophobic foam from waste plastic and its application for oil spill cleanup.
    Yu C; Lin W; Jiang J; Jing Z; Hong P; Li Y
    RSC Adv; 2019 Nov; 9(65):37759-37767. PubMed ID: 35541769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Atmospheric Pressure Plasma-Treated Polyurethane Foam as Reusable Absorbent for Removal of Oils and Organic Solvents from Water.
    Uricchio A; Lasalandra T; Tamborra ERG; Caputo G; Mota RP; Fanelli F
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ZnO nanoparticles coated and stearic acid modified superhydrophobic chitosan film for self-cleaning and oil-water separation.
    Yu M; Yang L; Yan L; Wang T; Wang Y; Qin Y; Xiong L; Shi R; Sun Q
    Int J Biol Macromol; 2023 Mar; 231():123293. PubMed ID: 36652982
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A compressible porous superhydrophobic material constructed by a multi-template high internal phase emulsion method for oil-water separation.
    Wen Z; Yang H; Lv M; Yu C; Li Y
    RSC Adv; 2023 Aug; 13(37):25920-25929. PubMed ID: 37655360
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation.
    Cao M; Luo X; Ren H; Feng J
    J Colloid Interface Sci; 2018 Feb; 512():567-574. PubMed ID: 29100161
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile Two-Step Strategy for the Construction of a Mechanically Stable Three-Dimensional Superhydrophobic Structure for Continuous Oil-Water Separation.
    Wang Y; Zhu Y; Yang C; Liu J; Jiang W; Liang B
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24149-24156. PubMed ID: 29956538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.