BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37003397)

  • 1. Epigenomic machinery regulating pediatric AML: Clonal expansion mechanisms, therapies, and future perspectives.
    Chianese U; Papulino C; Megchelenbrink W; Tambaro FP; Ciardiello F; Benedetti R; Altucci L
    Semin Cancer Biol; 2023 Jul; 92():84-101. PubMed ID: 37003397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered type 1 regulatory T cells designed for clinical use kill primary pediatric acute myeloid leukemia cells.
    Cieniewicz B; Uyeda MJ; Chen PP; Sayitoglu EC; Liu JM; Andolfi G; Greenthal K; Bertaina A; Gregori S; Bacchetta R; Lacayo NJ; Cepika AM; Roncarolo MG
    Haematologica; 2021 Oct; 106(10):2588-2597. PubMed ID: 33054128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation signatures of pediatric acute myeloid leukemia and normal blood progenitors associated with differential patient outcomes.
    Brandsma AM; Bertrums EJM; van Roosmalen MJ; Hofman DA; Oka R; Verheul M; Manders F; Ubels J; Belderbos ME; van Boxtel R
    Blood Cancer Discov; 2021 Sep; 2(5):484-499. PubMed ID: 34642666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Not the presence but the amount of clonal DNA detectable in remission of acute myeloid leukemia is predictive for relapse.
    Reif SW; Wiesner D; Duell T; Mittermueller J; Schmetzer HM
    Eur J Haematol; 2001 Oct; 67(4):207-20. PubMed ID: 11860441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and epigenetic determinants of AML pathogenesis.
    Cai SF; Levine RL
    Semin Hematol; 2019 Apr; 56(2):84-89. PubMed ID: 30926095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic mutations in epigenetic modifiers as therapeutic targets in acute myeloid leukemia.
    Nebbioso A; Benedetti R; Conte M; Iside C; Altucci L
    Expert Opin Ther Targets; 2015; 19(9):1187-202. PubMed ID: 26028314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolving molecular genetic landscape in acute myeloid leukaemia.
    Sanders MA; Valk PJ
    Curr Opin Hematol; 2013 Mar; 20(2):79-85. PubMed ID: 23380602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants.
    Tarlock K; Meshinchi S
    Pediatr Clin North Am; 2015 Feb; 62(1):75-93. PubMed ID: 25435113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A longitudinal single-cell atlas of treatment response in pediatric AML.
    Lambo S; Trinh DL; Ries RE; Jin D; Setiadi A; Ng M; Leblanc VG; Loken MR; Brodersen LE; Dai F; Pardo LM; Ma X; Vercauteren SM; Meshinchi S; Marra MA
    Cancer Cell; 2023 Dec; 41(12):2117-2135.e12. PubMed ID: 37977148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive review of genetic alterations and molecular targeted therapies for the implementation of personalized medicine in acute myeloid leukemia.
    Kirtonia A; Pandya G; Sethi G; Pandey AK; Das BC; Garg M
    J Mol Med (Berl); 2020 Aug; 98(8):1069-1091. PubMed ID: 32620999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic targeting and personalized approaches for AML.
    Roboz GJ
    Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):44-51. PubMed ID: 25696833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and targeting of splicing deregulation in pediatric acute myeloid leukemia stem cells.
    van der Werf I; Mondala PK; Steel SK; Balaian L; Ladel L; Mason CN; Diep RH; Pham J; Cloos J; Kaspers GJL; Chan WC; Mark A; La Clair JJ; Wentworth P; Fisch KM; Crews LA; Whisenant TC; Burkart MD; Donohoe ME; Jamieson CHM
    Cell Rep Med; 2023 Mar; 4(3):100962. PubMed ID: 36889320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Novel therapies for pediatric acute myeloid leukemia: building future strategies through incorporation of treatment currently used in adults].
    Moritake H
    Rinsho Ketsueki; 2020; 61(6):665-672. PubMed ID: 32624541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining Acute Myeloid Leukemia Ontogeny in Older Patients.
    Melody M; Kuykendall A; Sallman D; Al Ali N; Zhang L; Talati C; Padron E; Sweet K; Extermann M; List A; Lancet J; Komrokji R
    Clin Lymphoma Myeloma Leuk; 2020 May; 20(5):312-315. PubMed ID: 32139296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying high-risk adult AML patients: epigenetic and genetic risk factors and their implications for therapy.
    Bret C; Viziteu E; Kassambara A; Moreaux J
    Expert Rev Hematol; 2016; 9(4):351-60. PubMed ID: 26761438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia.
    Yang F; Anekpuritanang T; Press RD
    Mol Diagn Ther; 2020 Feb; 24(1):1-13. PubMed ID: 31848884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relapsed acute myeloid leukemia in children and adolescents: current treatment options and future strategies.
    Zarnegar-Lumley S; Caldwell KJ; Rubnitz JE
    Leukemia; 2022 Aug; 36(8):1951-1960. PubMed ID: 35668109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in AML: prognostic and therapeutic implications.
    DiNardo CD; Cortes JE
    Hematology Am Soc Hematol Educ Program; 2016 Dec; 2016(1):348-355. PubMed ID: 27913501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia.
    Abdel-Wahab O; Levine RL
    Blood; 2013 May; 121(18):3563-72. PubMed ID: 23640996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driver mutations in acute myeloid leukemia.
    Kishtagari A; Levine RL; Viny AD
    Curr Opin Hematol; 2020 Mar; 27(2):49-57. PubMed ID: 31972687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.